We are given four equations and asked to solve for $x$ in each equation and round the answer to 3 decimal places. The four equations are: 1. $11^{10x-15} = 12$

AlgebraExponentsLogarithmsEquationsSolving Equations
2025/4/3

1. Problem Description

We are given four equations and asked to solve for xx in each equation and round the answer to 3 decimal places.
The four equations are:

1. $11^{10x-15} = 12$

2. $\log_4(x^6) = 5$

3. $\frac{10^{14x}}{10^{11x-5}} = 9$

4. $\log_2(3x-7) + \log_2(4) = 5$

2. Solution Steps

Equation 1: 1110x15=1211^{10x-15} = 12
Take the natural logarithm of both sides:
ln(1110x15)=ln(12)\ln(11^{10x-15}) = \ln(12)
(10x15)ln(11)=ln(12)(10x-15)\ln(11) = \ln(12)
10x15=ln(12)ln(11)10x-15 = \frac{\ln(12)}{\ln(11)}
10x=15+ln(12)ln(11)10x = 15 + \frac{\ln(12)}{\ln(11)}
x=110(15+ln(12)ln(11))x = \frac{1}{10}\left(15 + \frac{\ln(12)}{\ln(11)}\right)
x=110(15+2.48492.3979)x = \frac{1}{10}\left(15 + \frac{2.4849}{2.3979}\right)
x=110(15+1.0363)x = \frac{1}{10}(15 + 1.0363)
x=110(16.0363)x = \frac{1}{10}(16.0363)
x=1.60363x = 1.60363
Rounded to 3 decimal places: x=1.604x = 1.604
Equation 2: log4(x6)=5\log_4(x^6) = 5
x6=45x^6 = 4^5
x6=1024x^6 = 1024
x=(1024)16x = (1024)^{\frac{1}{6}}
x=(210)16x = (2^{10})^{\frac{1}{6}}
x=2106=253x = 2^{\frac{10}{6}} = 2^{\frac{5}{3}}
x=21.6666...x = 2^{1.6666...}
x=3.1748x = 3.1748
Rounded to 3 decimal places: x=3.175x = 3.175
Equation 3: 1014x1011x5=9\frac{10^{14x}}{10^{11x-5}} = 9
1014x(11x5)=910^{14x - (11x-5)} = 9
1014x11x+5=910^{14x - 11x + 5} = 9
103x+5=910^{3x+5} = 9
Take the logarithm base 10 of both sides:
log10(103x+5)=log10(9)\log_{10}(10^{3x+5}) = \log_{10}(9)
3x+5=log10(9)3x+5 = \log_{10}(9)
3x=log10(9)53x = \log_{10}(9) - 5
x=log10(9)53x = \frac{\log_{10}(9) - 5}{3}
x=0.954253x = \frac{0.9542 - 5}{3}
x=4.04583x = \frac{-4.0458}{3}
x=1.3486x = -1.3486
Rounded to 3 decimal places: x=1.349x = -1.349
Equation 4: log2(3x7)+log2(4)=5\log_2(3x-7) + \log_2(4) = 5
log2((3x7)(4))=5\log_2((3x-7)(4)) = 5
log2(12x28)=5\log_2(12x-28) = 5
12x28=2512x-28 = 2^5
12x28=3212x-28 = 32
12x=32+2812x = 32+28
12x=6012x = 60
x=6012x = \frac{60}{12}
x=5x = 5

3. Final Answer

1. $x = 1.604$

2. $x = 3.175$

3. $x = -1.349$

4. $x = 5.000$