We need to solve the equation $3x - \frac{2}{3}(2x-1) = 4$ for $x$.

AlgebraLinear EquationsEquation SolvingFractions
2025/4/3

1. Problem Description

We need to solve the equation 3x23(2x1)=43x - \frac{2}{3}(2x-1) = 4 for xx.

2. Solution Steps

First, distribute the 23-\frac{2}{3} to the terms inside the parentheses:
3x23(2x)23(1)=43x - \frac{2}{3}(2x) - \frac{2}{3}(-1) = 4
3x43x+23=43x - \frac{4}{3}x + \frac{2}{3} = 4
Next, we need to combine the terms with xx. To do this, we need a common denominator, which is

3. $\frac{9}{3}x - \frac{4}{3}x + \frac{2}{3} = 4$

53x+23=4\frac{5}{3}x + \frac{2}{3} = 4
Subtract 23\frac{2}{3} from both sides of the equation:
53x=423\frac{5}{3}x = 4 - \frac{2}{3}
53x=12323\frac{5}{3}x = \frac{12}{3} - \frac{2}{3}
53x=103\frac{5}{3}x = \frac{10}{3}
Now, multiply both sides of the equation by 35\frac{3}{5} to isolate xx:
x=10335x = \frac{10}{3} \cdot \frac{3}{5}
x=10335x = \frac{10 \cdot 3}{3 \cdot 5}
x=3015x = \frac{30}{15}
x=2x = 2

3. Final Answer

The solution is x=2x = 2.