We are given three equations and one inequality to solve: a. $(x+1)^{log(x+1)} = 100(x+1)$ b. $log_2 x = 1 + log_x 4$ c. $log_2 (x+3) + log_2 (x-3) = 2$ d. $log \frac{x^2-x}{x^2+1} < 0$

AlgebraLogarithmsEquationsInequalitiesSolving EquationsExponents
2025/4/3

1. Problem Description

We are given three equations and one inequality to solve:
a. (x+1)log(x+1)=100(x+1)(x+1)^{log(x+1)} = 100(x+1)
b. log2x=1+logx4log_2 x = 1 + log_x 4
c. log2(x+3)+log2(x3)=2log_2 (x+3) + log_2 (x-3) = 2
d. logx2xx2+1<0log \frac{x^2-x}{x^2+1} < 0

2. Solution Steps

a. (x+1)log(x+1)=100(x+1)(x+1)^{log(x+1)} = 100(x+1)
Take loglog on both sides:
log((x+1)log(x+1))=log(100(x+1))log((x+1)^{log(x+1)}) = log(100(x+1))
log(x+1)log(x+1)=log(100)+log(x+1)log(x+1) * log(x+1) = log(100) + log(x+1)
(log(x+1))2=2+log(x+1)(log(x+1))^2 = 2 + log(x+1)
Let y=log(x+1)y = log(x+1). Then the equation becomes:
y2=2+yy^2 = 2 + y
y2y2=0y^2 - y - 2 = 0
(y2)(y+1)=0(y-2)(y+1) = 0
y=2y = 2 or y=1y = -1
Case 1: log(x+1)=2log(x+1) = 2
x+1=102=100x+1 = 10^2 = 100
x=99x = 99
Case 2: log(x+1)=1log(x+1) = -1
x+1=101=110x+1 = 10^{-1} = \frac{1}{10}
x=1101=910x = \frac{1}{10} - 1 = -\frac{9}{10}
b. log2x=1+logx4log_2 x = 1 + log_x 4
log2x=1+log24log2xlog_2 x = 1 + \frac{log_2 4}{log_2 x}
log2x=1+2log2xlog_2 x = 1 + \frac{2}{log_2 x}
Let y=log2xy = log_2 x. Then the equation becomes:
y=1+2yy = 1 + \frac{2}{y}
y2=y+2y^2 = y + 2
y2y2=0y^2 - y - 2 = 0
(y2)(y+1)=0(y-2)(y+1) = 0
y=2y = 2 or y=1y = -1
Case 1: log2x=2log_2 x = 2
x=22=4x = 2^2 = 4
Case 2: log2x=1log_2 x = -1
x=21=12x = 2^{-1} = \frac{1}{2}
c. log2(x+3)+log2(x3)=2log_2 (x+3) + log_2 (x-3) = 2
log2((x+3)(x3))=2log_2 ((x+3)(x-3)) = 2
log2(x29)=2log_2 (x^2 - 9) = 2
x29=22=4x^2 - 9 = 2^2 = 4
x2=13x^2 = 13
x=±13x = \pm\sqrt{13}
Since x>3x > 3, we have x=13x = \sqrt{13}.
d. logx2xx2+1<0log \frac{x^2-x}{x^2+1} < 0
Since log is the base-10 logarithm, the expression is less than 0 when:
x2xx2+1<1\frac{x^2-x}{x^2+1} < 1 and x2xx2+1>0\frac{x^2-x}{x^2+1} > 0
x2x<x2+1x^2 - x < x^2 + 1
x<1-x < 1
x>1x > -1
x2x>0x^2 - x > 0
x(x1)>0x(x-1) > 0
So x<0x < 0 or x>1x > 1
Therefore, the solution is (1,0)(1,)(-1, 0) \cup (1, \infty)

3. Final Answer

a. x=99x = 99 or x=910x = -\frac{9}{10}
b. x=4x = 4 or x=12x = \frac{1}{2}
c. x=13x = \sqrt{13}
d. x(1,0)(1,)x \in (-1, 0) \cup (1, \infty)