a. ( x + 1 ) l o g ( x + 1 ) = 100 ( x + 1 ) (x+1)^{log(x+1)} = 100(x+1) ( x + 1 ) l o g ( x + 1 ) = 100 ( x + 1 ) Take l o g log l o g on both sides: l o g ( ( x + 1 ) l o g ( x + 1 ) ) = l o g ( 100 ( x + 1 ) ) log((x+1)^{log(x+1)}) = log(100(x+1)) l o g (( x + 1 ) l o g ( x + 1 ) ) = l o g ( 100 ( x + 1 )) l o g ( x + 1 ) ∗ l o g ( x + 1 ) = l o g ( 100 ) + l o g ( x + 1 ) log(x+1) * log(x+1) = log(100) + log(x+1) l o g ( x + 1 ) ∗ l o g ( x + 1 ) = l o g ( 100 ) + l o g ( x + 1 ) ( l o g ( x + 1 ) ) 2 = 2 + l o g ( x + 1 ) (log(x+1))^2 = 2 + log(x+1) ( l o g ( x + 1 ) ) 2 = 2 + l o g ( x + 1 ) Let y = l o g ( x + 1 ) y = log(x+1) y = l o g ( x + 1 ) . Then the equation becomes: y 2 − y − 2 = 0 y^2 - y - 2 = 0 y 2 − y − 2 = 0 ( y − 2 ) ( y + 1 ) = 0 (y-2)(y+1) = 0 ( y − 2 ) ( y + 1 ) = 0 y = 2 y = 2 y = 2 or y = − 1 y = -1 y = − 1
Case 1: l o g ( x + 1 ) = 2 log(x+1) = 2 l o g ( x + 1 ) = 2 x + 1 = 10 2 = 100 x+1 = 10^2 = 100 x + 1 = 1 0 2 = 100
Case 2: l o g ( x + 1 ) = − 1 log(x+1) = -1 l o g ( x + 1 ) = − 1 x + 1 = 10 − 1 = 1 10 x+1 = 10^{-1} = \frac{1}{10} x + 1 = 1 0 − 1 = 10 1 x = 1 10 − 1 = − 9 10 x = \frac{1}{10} - 1 = -\frac{9}{10} x = 10 1 − 1 = − 10 9
b. l o g 2 x = 1 + l o g x 4 log_2 x = 1 + log_x 4 l o g 2 x = 1 + l o g x 4 l o g 2 x = 1 + l o g 2 4 l o g 2 x log_2 x = 1 + \frac{log_2 4}{log_2 x} l o g 2 x = 1 + l o g 2 x l o g 2 4 l o g 2 x = 1 + 2 l o g 2 x log_2 x = 1 + \frac{2}{log_2 x} l o g 2 x = 1 + l o g 2 x 2 Let y = l o g 2 x y = log_2 x y = l o g 2 x . Then the equation becomes: y = 1 + 2 y y = 1 + \frac{2}{y} y = 1 + y 2 y 2 − y − 2 = 0 y^2 - y - 2 = 0 y 2 − y − 2 = 0 ( y − 2 ) ( y + 1 ) = 0 (y-2)(y+1) = 0 ( y − 2 ) ( y + 1 ) = 0 y = 2 y = 2 y = 2 or y = − 1 y = -1 y = − 1
Case 1: l o g 2 x = 2 log_2 x = 2 l o g 2 x = 2
Case 2: l o g 2 x = − 1 log_2 x = -1 l o g 2 x = − 1 x = 2 − 1 = 1 2 x = 2^{-1} = \frac{1}{2} x = 2 − 1 = 2 1
c. l o g 2 ( x + 3 ) + l o g 2 ( x − 3 ) = 2 log_2 (x+3) + log_2 (x-3) = 2 l o g 2 ( x + 3 ) + l o g 2 ( x − 3 ) = 2 l o g 2 ( ( x + 3 ) ( x − 3 ) ) = 2 log_2 ((x+3)(x-3)) = 2 l o g 2 (( x + 3 ) ( x − 3 )) = 2 l o g 2 ( x 2 − 9 ) = 2 log_2 (x^2 - 9) = 2 l o g 2 ( x 2 − 9 ) = 2 x 2 − 9 = 2 2 = 4 x^2 - 9 = 2^2 = 4 x 2 − 9 = 2 2 = 4 x = ± 13 x = \pm\sqrt{13} x = ± 13 Since x > 3 x > 3 x > 3 , we have x = 13 x = \sqrt{13} x = 13 .
d. l o g x 2 − x x 2 + 1 < 0 log \frac{x^2-x}{x^2+1} < 0 l o g x 2 + 1 x 2 − x < 0 Since log is the base-10 logarithm, the expression is less than 0 when:
x 2 − x x 2 + 1 < 1 \frac{x^2-x}{x^2+1} < 1 x 2 + 1 x 2 − x < 1 and x 2 − x x 2 + 1 > 0 \frac{x^2-x}{x^2+1} > 0 x 2 + 1 x 2 − x > 0 x 2 − x < x 2 + 1 x^2 - x < x^2 + 1 x 2 − x < x 2 + 1 x ( x − 1 ) > 0 x(x-1) > 0 x ( x − 1 ) > 0 So x < 0 x < 0 x < 0 or x > 1 x > 1 x > 1 Therefore, the solution is ( − 1 , 0 ) ∪ ( 1 , ∞ ) (-1, 0) \cup (1, \infty) ( − 1 , 0 ) ∪ ( 1 , ∞ )