The problem asks us to add and simplify the expression $\frac{4}{x+7} + \frac{3}{x^2 - 49}$.

AlgebraAlgebraic ExpressionsSimplificationFractionsRational ExpressionsCommon Denominator
2025/4/3

1. Problem Description

The problem asks us to add and simplify the expression 4x+7+3x249\frac{4}{x+7} + \frac{3}{x^2 - 49}.

2. Solution Steps

First, we factor the denominator of the second term:
x249=(x+7)(x7)x^2 - 49 = (x+7)(x-7)
So the expression becomes:
4x+7+3(x+7)(x7)\frac{4}{x+7} + \frac{3}{(x+7)(x-7)}
To add the two fractions, we need to find a common denominator, which is (x+7)(x7)(x+7)(x-7). We multiply the first fraction by x7x7\frac{x-7}{x-7} to get a common denominator:
4(x7)(x+7)(x7)+3(x+7)(x7)\frac{4(x-7)}{(x+7)(x-7)} + \frac{3}{(x+7)(x-7)}
Now we can add the numerators:
4(x7)+3(x+7)(x7)\frac{4(x-7) + 3}{(x+7)(x-7)}
Distribute the 4 in the numerator:
4x28+3(x+7)(x7)\frac{4x - 28 + 3}{(x+7)(x-7)}
Simplify the numerator:
4x25(x+7)(x7)\frac{4x - 25}{(x+7)(x-7)}
Since x249=(x+7)(x7)x^2 - 49 = (x+7)(x-7), we can also write the result as:
4x25x249\frac{4x - 25}{x^2 - 49}

3. Final Answer

4x25x249\frac{4x-25}{x^2-49}