First, factor the denominators:
x2−11x+28=(x−4)(x−7) x2−4x=x(x−4) So, the given expression becomes:
(x−4)(x−7)6+x(x−4)5 To add the two fractions, we need a common denominator. The least common denominator (LCD) is x(x−4)(x−7). Rewrite each fraction with the LCD:
(x−4)(x−7)6⋅xx=x(x−4)(x−7)6x x(x−4)5⋅(x−7)(x−7)=x(x−4)(x−7)5(x−7) Now, add the two fractions:
x(x−4)(x−7)6x+x(x−4)(x−7)5(x−7)=x(x−4)(x−7)6x+5(x−7) Simplify the numerator:
6x+5(x−7)=6x+5x−35=11x−35 So the expression becomes:
x(x−4)(x−7)11x−35 Expand the denominator:
x(x−4)(x−7)=x(x2−7x−4x+28)=x(x2−11x+28)=x3−11x2+28x So the simplified expression is:
x3−11x2+28x11x−35