The problem asks us to add two rational expressions and simplify the result: $\frac{6}{x^2 - 11x + 28} + \frac{5}{x^2 - 4x}$

AlgebraRational ExpressionsSimplificationFactoringCommon Denominator
2025/4/3

1. Problem Description

The problem asks us to add two rational expressions and simplify the result:
6x211x+28+5x24x\frac{6}{x^2 - 11x + 28} + \frac{5}{x^2 - 4x}

2. Solution Steps

First, factor the denominators:
x211x+28=(x4)(x7)x^2 - 11x + 28 = (x - 4)(x - 7)
x24x=x(x4)x^2 - 4x = x(x - 4)
So, the given expression becomes:
6(x4)(x7)+5x(x4)\frac{6}{(x - 4)(x - 7)} + \frac{5}{x(x - 4)}
To add the two fractions, we need a common denominator. The least common denominator (LCD) is x(x4)(x7)x(x - 4)(x - 7).
Rewrite each fraction with the LCD:
6(x4)(x7)xx=6xx(x4)(x7)\frac{6}{(x - 4)(x - 7)} \cdot \frac{x}{x} = \frac{6x}{x(x - 4)(x - 7)}
5x(x4)(x7)(x7)=5(x7)x(x4)(x7)\frac{5}{x(x - 4)} \cdot \frac{(x - 7)}{(x - 7)} = \frac{5(x - 7)}{x(x - 4)(x - 7)}
Now, add the two fractions:
6xx(x4)(x7)+5(x7)x(x4)(x7)=6x+5(x7)x(x4)(x7)\frac{6x}{x(x - 4)(x - 7)} + \frac{5(x - 7)}{x(x - 4)(x - 7)} = \frac{6x + 5(x - 7)}{x(x - 4)(x - 7)}
Simplify the numerator:
6x+5(x7)=6x+5x35=11x356x + 5(x - 7) = 6x + 5x - 35 = 11x - 35
So the expression becomes:
11x35x(x4)(x7)\frac{11x - 35}{x(x - 4)(x - 7)}
Expand the denominator:
x(x4)(x7)=x(x27x4x+28)=x(x211x+28)=x311x2+28xx(x - 4)(x - 7) = x(x^2 - 7x - 4x + 28) = x(x^2 - 11x + 28) = x^3 - 11x^2 + 28x
So the simplified expression is:
11x35x311x2+28x\frac{11x - 35}{x^3 - 11x^2 + 28x}

3. Final Answer

11x35x(x4)(x7)\frac{11x - 35}{x(x - 4)(x - 7)}
or
11x35x311x2+28x\frac{11x - 35}{x^3 - 11x^2 + 28x}