The problem asks us to add and simplify the expression: $\frac{-3x}{x^2 - 4} + \frac{1}{x^2 - 4x + 4}$.

AlgebraRational ExpressionsSimplificationFraction AdditionFactoringAlgebraic Manipulation
2025/4/3

1. Problem Description

The problem asks us to add and simplify the expression: 3xx24+1x24x+4\frac{-3x}{x^2 - 4} + \frac{1}{x^2 - 4x + 4}.

2. Solution Steps

First, we factor the denominators:
x24=(x2)(x+2)x^2 - 4 = (x-2)(x+2)
x24x+4=(x2)(x2)=(x2)2x^2 - 4x + 4 = (x-2)(x-2) = (x-2)^2
Now, we rewrite the expression:
3x(x2)(x+2)+1(x2)2\frac{-3x}{(x-2)(x+2)} + \frac{1}{(x-2)^2}
To add these fractions, we need a common denominator. The least common denominator is (x2)2(x+2)(x-2)^2(x+2).
We multiply the first fraction by x2x2\frac{x-2}{x-2} and the second fraction by x+2x+2\frac{x+2}{x+2}:
3x(x2)(x2)2(x+2)+1(x+2)(x2)2(x+2)\frac{-3x(x-2)}{(x-2)^2(x+2)} + \frac{1(x+2)}{(x-2)^2(x+2)}
3x2+6x(x2)2(x+2)+x+2(x2)2(x+2)\frac{-3x^2 + 6x}{(x-2)^2(x+2)} + \frac{x+2}{(x-2)^2(x+2)}
3x2+6x+x+2(x2)2(x+2)\frac{-3x^2 + 6x + x + 2}{(x-2)^2(x+2)}
3x2+7x+2(x2)2(x+2)\frac{-3x^2 + 7x + 2}{(x-2)^2(x+2)}
We try to factor the numerator. 3x2+7x+2-3x^2+7x+2 doesn't seem to have (x2)(x-2) or (x+2)(x+2) as a factor.
So, the final answer is:
3x2+7x+2(x2)2(x+2)\frac{-3x^2 + 7x + 2}{(x-2)^2(x+2)}

3. Final Answer

3x2+7x+2(x2)2(x+2)\frac{-3x^2 + 7x + 2}{(x-2)^2(x+2)}