We are asked to simplify the complex fraction: $\frac{\frac{7}{x+y} + \frac{1}{6}}{\frac{x}{x+y} - 1}$

AlgebraComplex FractionsAlgebraic SimplificationRational Expressions
2025/4/3

1. Problem Description

We are asked to simplify the complex fraction:
7x+y+16xx+y1\frac{\frac{7}{x+y} + \frac{1}{6}}{\frac{x}{x+y} - 1}

2. Solution Steps

First, simplify the numerator:
7x+y+16=7(6)+1(x+y)6(x+y)=42+x+y6(x+y)\frac{7}{x+y} + \frac{1}{6} = \frac{7(6) + 1(x+y)}{6(x+y)} = \frac{42 + x + y}{6(x+y)}
Next, simplify the denominator:
xx+y1=x(x+y)x+y=xxyx+y=yx+y\frac{x}{x+y} - 1 = \frac{x - (x+y)}{x+y} = \frac{x - x - y}{x+y} = \frac{-y}{x+y}
Now we have:
42+x+y6(x+y)yx+y\frac{\frac{42+x+y}{6(x+y)}}{\frac{-y}{x+y}}
To simplify this complex fraction, we multiply the numerator by the reciprocal of the denominator:
42+x+y6(x+y)x+yy=(42+x+y)(x+y)6(x+y)(y)\frac{42+x+y}{6(x+y)} \cdot \frac{x+y}{-y} = \frac{(42+x+y)(x+y)}{6(x+y)(-y)}
We can cancel out the (x+y)(x+y) term in the numerator and denominator, assuming x+y0x+y \neq 0:
42+x+y6(y)=42+x+y6y=x+y+426y\frac{42+x+y}{6(-y)} = \frac{42+x+y}{-6y} = -\frac{x+y+42}{6y}

3. Final Answer

x+y+426y-\frac{x+y+42}{6y}
Or equivalently:
xy426y\frac{-x-y-42}{6y}