Simplify the complex fraction $\frac{\frac{1}{x-a} - \frac{1}{a}}{x}$.

AlgebraComplex FractionsSimplificationAlgebraic Manipulation
2025/4/3

1. Problem Description

Simplify the complex fraction 1xa1ax\frac{\frac{1}{x-a} - \frac{1}{a}}{x}.

2. Solution Steps

To simplify the given complex fraction, we first simplify the numerator. The numerator is 1xa1a\frac{1}{x-a} - \frac{1}{a}. To subtract these two fractions, we need to find a common denominator, which is a(xa)a(x-a).
So, we have
1xa1a=aa(xa)xaa(xa)=a(xa)a(xa)=ax+aa(xa)=2axa(xa)\frac{1}{x-a} - \frac{1}{a} = \frac{a}{a(x-a)} - \frac{x-a}{a(x-a)} = \frac{a - (x-a)}{a(x-a)} = \frac{a - x + a}{a(x-a)} = \frac{2a - x}{a(x-a)}.
Now, we can rewrite the complex fraction as
2axa(xa)x=2axa(xa)1x=2axax(xa)\frac{\frac{2a - x}{a(x-a)}}{x} = \frac{2a - x}{a(x-a)} \cdot \frac{1}{x} = \frac{2a - x}{ax(x-a)}.

3. Final Answer

The simplified fraction is 2axax(xa)\frac{2a-x}{ax(x-a)}.