The problem is to simplify the expression: $\frac{\frac{\sqrt{3}}{3} \times 1 + \frac{\sqrt{3}}{3} \times (-1) + \frac{\sqrt{3}}{3} \times 0}{\sqrt{(\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2} \times \sqrt{1^2 + (-1)^2 + 0^2}}$

ArithmeticSimplificationFractionsSquare RootsOrder of Operations
2025/4/5

1. Problem Description

The problem is to simplify the expression:
33×1+33×(1)+33×0(33)2+(33)2+(33)2×12+(1)2+02\frac{\frac{\sqrt{3}}{3} \times 1 + \frac{\sqrt{3}}{3} \times (-1) + \frac{\sqrt{3}}{3} \times 0}{\sqrt{(\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2} \times \sqrt{1^2 + (-1)^2 + 0^2}}

2. Solution Steps

First, simplify the numerator:
33×1+33×(1)+33×0=3333+0=0\frac{\sqrt{3}}{3} \times 1 + \frac{\sqrt{3}}{3} \times (-1) + \frac{\sqrt{3}}{3} \times 0 = \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + 0 = 0
Next, simplify the denominator:
The first radical is
(33)2+(33)2+(33)2=39+39+39=99=1=1\sqrt{(\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2} = \sqrt{\frac{3}{9} + \frac{3}{9} + \frac{3}{9}} = \sqrt{\frac{9}{9}} = \sqrt{1} = 1
The second radical is
12+(1)2+02=1+1+0=2\sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{1 + 1 + 0} = \sqrt{2}
Therefore, the denominator is
1×2=21 \times \sqrt{2} = \sqrt{2}
The entire expression becomes:
02=0\frac{0}{\sqrt{2}} = 0

3. Final Answer

0

Related problems in "Arithmetic"