We are asked to evaluate the following expression: $\frac{-\frac{\sqrt{3}}{3} \times (-2) + \sqrt{\frac{7}{3}} \times (-2) + \frac{\sqrt{3}}{3} \times 1}{\sqrt{(\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2} \times \sqrt{(-2)^2 + (-2)^2 + (1)^2}}$

ArithmeticSimplificationRadicalsFractionsOrder of Operations
2025/4/5

1. Problem Description

We are asked to evaluate the following expression:
33×(2)+73×(2)+33×1(33)2+(33)2+(33)2×(2)2+(2)2+(1)2\frac{-\frac{\sqrt{3}}{3} \times (-2) + \sqrt{\frac{7}{3}} \times (-2) + \frac{\sqrt{3}}{3} \times 1}{\sqrt{(\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2} \times \sqrt{(-2)^2 + (-2)^2 + (1)^2}}

2. Solution Steps

First, simplify the numerator:
33×(2)=233-\frac{\sqrt{3}}{3} \times (-2) = \frac{2\sqrt{3}}{3}
73×(2)=273=273=2733=2213\sqrt{\frac{7}{3}} \times (-2) = -2\sqrt{\frac{7}{3}} = -2 \frac{\sqrt{7}}{\sqrt{3}} = -2 \frac{\sqrt{7}\sqrt{3}}{3} = -\frac{2\sqrt{21}}{3}
33×1=33\frac{\sqrt{3}}{3} \times 1 = \frac{\sqrt{3}}{3}
So, the numerator is:
2332213+33=3332213=32213\frac{2\sqrt{3}}{3} - \frac{2\sqrt{21}}{3} + \frac{\sqrt{3}}{3} = \frac{3\sqrt{3}}{3} - \frac{2\sqrt{21}}{3} = \sqrt{3} - \frac{2\sqrt{21}}{3}
Now, simplify the denominator:
(33)2=39=13(\frac{\sqrt{3}}{3})^2 = \frac{3}{9} = \frac{1}{3}
(33)2+(33)2+(33)2=13+13+13=1=1\sqrt{(\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2 + (\frac{\sqrt{3}}{3})^2} = \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = \sqrt{1} = 1
(2)2=4(-2)^2 = 4
(1)2=1(1)^2 = 1
(2)2+(2)2+(1)2=4+4+1=9=3\sqrt{(-2)^2 + (-2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3
So, the denominator is:
1×3=31 \times 3 = 3
Therefore, the expression becomes:
322133=332219=332219\frac{\sqrt{3} - \frac{2\sqrt{21}}{3}}{3} = \frac{\sqrt{3}}{3} - \frac{2\sqrt{21}}{9} = \frac{3\sqrt{3} - 2\sqrt{21}}{9}

3. Final Answer

332219\frac{3\sqrt{3} - 2\sqrt{21}}{9}

Related problems in "Arithmetic"