We need to solve the following four math problems: Problem 31: $1\frac{4}{5} + \frac{3}{10} = ?$ Problem 32: $1118 \div 43 = ?$ Problem 33: $\frac{3}{5} \div 3 = ?$ Problem 34: $\frac{2}{5} \times 140 = ?$

ArithmeticFractionsMixed NumbersDivisionMultiplicationAdditionSimplificationLong Division
2025/4/5

1. Problem Description

We need to solve the following four math problems:
Problem 31: 145+310=?1\frac{4}{5} + \frac{3}{10} = ?
Problem 32: 1118÷43=?1118 \div 43 = ?
Problem 33: 35÷3=?\frac{3}{5} \div 3 = ?
Problem 34: 25×140=?\frac{2}{5} \times 140 = ?

2. Solution Steps

Problem 31: 145+3101\frac{4}{5} + \frac{3}{10}
First, convert the mixed number to an improper fraction:
145=1×5+45=951\frac{4}{5} = \frac{1 \times 5 + 4}{5} = \frac{9}{5}
Now, we have 95+310\frac{9}{5} + \frac{3}{10}. To add these fractions, we need a common denominator. The least common multiple of 5 and 10 is
1

0. So, we convert $\frac{9}{5}$ to an equivalent fraction with a denominator of 10:

95=9×25×2=1810\frac{9}{5} = \frac{9 \times 2}{5 \times 2} = \frac{18}{10}
Now, we can add the fractions:
1810+310=18+310=2110\frac{18}{10} + \frac{3}{10} = \frac{18+3}{10} = \frac{21}{10}
Finally, convert the improper fraction to a mixed number:
2110=2110\frac{21}{10} = 2\frac{1}{10}
Problem 32: 1118÷431118 \div 43
We can use long division to solve this.
1118÷43=261118 \div 43 = 26
Problem 33: 35÷3\frac{3}{5} \div 3
To divide a fraction by a whole number, we can multiply the fraction by the reciprocal of the whole number. The reciprocal of 3 is 13\frac{1}{3}.
35÷3=35×13=3×15×3=315\frac{3}{5} \div 3 = \frac{3}{5} \times \frac{1}{3} = \frac{3 \times 1}{5 \times 3} = \frac{3}{15}
Simplify the fraction:
315=15\frac{3}{15} = \frac{1}{5}
Problem 34: 25×140\frac{2}{5} \times 140
25×140=2×1405=2805\frac{2}{5} \times 140 = \frac{2 \times 140}{5} = \frac{280}{5}
Now, divide 280 by 5:
280÷5=56280 \div 5 = 56

3. Final Answer

Problem 31: 21102\frac{1}{10}
Problem 32: 2626
Problem 33: 15\frac{1}{5}
Problem 34: 5656

Related problems in "Arithmetic"