循環小数 $1.0252525...$ と $0.0757575...$ の和を計算する問題です。算数循環小数分数計算2025/8/111. 問題の内容循環小数 1.0252525...1.0252525...1.0252525... と 0.0757575...0.0757575...0.0757575... の和を計算する問題です。2. 解き方の手順まず、循環小数を分数に変換します。x=1.0252525...x = 1.0252525...x=1.0252525... とおくと、100x=102.5252525...100x = 102.5252525...100x=102.5252525...100x−x=102.5252525...−1.0252525...100x - x = 102.5252525... - 1.0252525...100x−x=102.5252525...−1.0252525...99x=101.599x = 101.599x=101.5x=101.599=1015990=203198x = \frac{101.5}{99} = \frac{1015}{990} = \frac{203}{198}x=99101.5=9901015=198203次に、y=0.0757575...y = 0.0757575...y=0.0757575... とおくと、100y=7.5757575...100y = 7.5757575...100y=7.5757575...100y−y=7.5757575...−0.0757575...100y - y = 7.5757575... - 0.0757575...100y−y=7.5757575...−0.0757575...99y=7.599y = 7.599y=7.5y=7.599=75990=15198y = \frac{7.5}{99} = \frac{75}{990} = \frac{15}{198}y=997.5=99075=19815最後に、x+yx + yx+y を計算します。x+y=203198+15198=203+15198=218198=10999x + y = \frac{203}{198} + \frac{15}{198} = \frac{203 + 15}{198} = \frac{218}{198} = \frac{109}{99}x+y=198203+19815=198203+15=198218=9910910999=11099=1.101010...=1.10‾\frac{109}{99} = 1\frac{10}{99} = 1.101010... = 1.\overline{10}99109=19910=1.101010...=1.103. 最終的な答え1.10‾1.\overline{10}1.10