与えられた数式を、文字式の表し方に従って書き換える問題です。代数学文字式計算2025/8/151. 問題の内容与えられた数式を、文字式の表し方に従って書き換える問題です。2. 解き方の手順(1) a×b÷c=abca \times b \div c = \frac{ab}{c}a×b÷c=cab(2) a÷b×c=ab×c=acba \div b \times c = \frac{a}{b} \times c = \frac{ac}{b}a÷b×c=ba×c=bac(3) x÷y÷z=xy÷z=xy×1z=xyzx \div y \div z = \frac{x}{y} \div z = \frac{x}{y} \times \frac{1}{z} = \frac{x}{yz}x÷y÷z=yx÷z=yx×z1=yzx(4) 4÷(−x)×(−y)=4×1−x×(−y)=4×yx=4yx4 \div (-x) \times (-y) = 4 \times \frac{1}{-x} \times (-y) = 4 \times \frac{y}{x} = \frac{4y}{x}4÷(−x)×(−y)=4×−x1×(−y)=4×xy=x4y(5) x×x×x+z×z×z=x3+z3x \times x \times x + z \times z \times z = x^3 + z^3x×x×x+z×z×z=x3+z3(6) x−y÷5=x−y5x - y \div 5 = x - \frac{y}{5}x−y÷5=x−5y(7) a+3×b÷c=a+3bca + 3 \times b \div c = a + \frac{3b}{c}a+3×b÷c=a+c3b(8) p×3+q÷r=3p+qrp \times 3 + q \div r = 3p + \frac{q}{r}p×3+q÷r=3p+rq(9) x×x×x+(m−n)×(m−n)=x3+(m−n)2x \times x \times x + (m-n) \times (m-n) = x^3 + (m-n)^2x×x×x+(m−n)×(m−n)=x3+(m−n)2(1) a÷3=a3a \div 3 = \frac{a}{3}a÷3=3a(2) (x+y)÷3=x+y3(x+y) \div 3 = \frac{x+y}{3}(x+y)÷3=3x+y(3) 4x÷9=4x94x \div 9 = \frac{4x}{9}4x÷9=94x(4) (−5x)÷(−7y)=−5x−7y=5x7y(-5x) \div (-7y) = \frac{-5x}{-7y} = \frac{5x}{7y}(−5x)÷(−7y)=−7y−5x=7y5x3. 最終的な答え(1) abc\frac{ab}{c}cab(2) acb\frac{ac}{b}bac(3) xyz\frac{x}{yz}yzx(4) 4yx\frac{4y}{x}x4y(5) x3+z3x^3 + z^3x3+z3(6) x−y5x - \frac{y}{5}x−5y(7) a+3bca + \frac{3b}{c}a+c3b(8) 3p+qr3p + \frac{q}{r}3p+rq(9) x3+(m−n)2x^3 + (m-n)^2x3+(m−n)2(1) a3\frac{a}{3}3a(2) x+y3\frac{x+y}{3}3x+y(3) 4x9\frac{4x}{9}94x(4) 5x7y\frac{5x}{7y}7y5x