画像にある以下の問題を解きます。 * (30) $54ab \div 6b$ * (31) $(-8x^2) \div 12a^2$ * (32) $(-20xy) \div (-\frac{5}{4}x)$ * (33) $\frac{5}{6}a^2 \div (-\frac{5}{12}a)$ * (34) $(-4x) \times 6xy \div (-3y)$ * (35) $16a^2b^2 \div 2ab \times (-4a)$ * (36) $32xy^2 \div (-8y) \div 2y$ * (37) $(-18xy^2) \times 2x \div (-3x)^2$ * (38) $2x+y = 5$ (y について解く) * (39) $5a-2b = 12$ (b について解く) * (40) $a = \frac{3b+c}{2}$ (c について解く) * (25) $9a \times (-7b)$ * (26) $\frac{2}{3}ab \times (-12b)$ * (27) $-(-4a)^2$ * (28) $(-5x)^2 \times (-2y)$ * (29) $6a \times (-b)^3$

代数学式の計算文字式一次方程式分数式
2025/8/15

1. 問題の内容

画像にある以下の問題を解きます。
* (30) 54ab÷6b54ab \div 6b
* (31) (8x2)÷12a2(-8x^2) \div 12a^2
* (32) (20xy)÷(54x)(-20xy) \div (-\frac{5}{4}x)
* (33) 56a2÷(512a)\frac{5}{6}a^2 \div (-\frac{5}{12}a)
* (34) (4x)×6xy÷(3y)(-4x) \times 6xy \div (-3y)
* (35) 16a2b2÷2ab×(4a)16a^2b^2 \div 2ab \times (-4a)
* (36) 32xy2÷(8y)÷2y32xy^2 \div (-8y) \div 2y
* (37) (18xy2)×2x÷(3x)2(-18xy^2) \times 2x \div (-3x)^2
* (38) 2x+y=52x+y = 5 (y について解く)
* (39) 5a2b=125a-2b = 12 (b について解く)
* (40) a=3b+c2a = \frac{3b+c}{2} (c について解く)
* (25) 9a×(7b)9a \times (-7b)
* (26) 23ab×(12b)\frac{2}{3}ab \times (-12b)
* (27) (4a)2-(-4a)^2
* (28) (5x)2×(2y)(-5x)^2 \times (-2y)
* (29) 6a×(b)36a \times (-b)^3

2. 解き方の手順

それぞれの問題に対して以下の手順で計算します。
* (30) 54ab÷6b=54ab6b=9a54ab \div 6b = \frac{54ab}{6b} = 9a
* (31) (8x2)÷12a2=8x212a2=2x23a2(-8x^2) \div 12a^2 = \frac{-8x^2}{12a^2} = -\frac{2x^2}{3a^2}
* (32) (20xy)÷(54x)=20xy×(45x)=80xy5x=16y(-20xy) \div (-\frac{5}{4}x) = -20xy \times (-\frac{4}{5x}) = \frac{80xy}{5x} = 16y
* (33) 56a2÷(512a)=56a2×(125a)=60a230a=2a\frac{5}{6}a^2 \div (-\frac{5}{12}a) = \frac{5}{6}a^2 \times (-\frac{12}{5a}) = -\frac{60a^2}{30a} = -2a
* (34) (4x)×6xy÷(3y)=(4x)×6xy3y=24x2y3y=8x2(-4x) \times 6xy \div (-3y) = \frac{(-4x) \times 6xy}{-3y} = \frac{-24x^2y}{-3y} = 8x^2
* (35) 16a2b2÷2ab×(4a)=16a2b22ab×(4a)=8ab×(4a)=32a2b16a^2b^2 \div 2ab \times (-4a) = \frac{16a^2b^2}{2ab} \times (-4a) = 8ab \times (-4a) = -32a^2b
* (36) 32xy2÷(8y)÷2y=32xy28y÷2y=4xy÷2y=4xy2y=2x32xy^2 \div (-8y) \div 2y = \frac{32xy^2}{-8y} \div 2y = -4xy \div 2y = \frac{-4xy}{2y} = -2x
* (37) (18xy2)×2x÷(3x)2=(18xy2)×2x(3x)2=36x2y29x2=4y2(-18xy^2) \times 2x \div (-3x)^2 = \frac{(-18xy^2) \times 2x}{(-3x)^2} = \frac{-36x^2y^2}{9x^2} = -4y^2
* (38) 2x+y=52x+y = 5 より y=52xy = 5 - 2x
* (39) 5a2b=125a-2b = 12 より 2b=125a-2b = 12 - 5a よって b=5a122b = \frac{5a - 12}{2}
* (40) a=3b+c2a = \frac{3b+c}{2} より 2a=3b+c2a = 3b + c よって c=2a3bc = 2a - 3b
* (25) 9a×(7b)=63ab9a \times (-7b) = -63ab
* (26) 23ab×(12b)=8ab2\frac{2}{3}ab \times (-12b) = -8ab^2
* (27) (4a)2=(16a2)=16a2-(-4a)^2 = - (16a^2) = -16a^2
* (28) (5x)2×(2y)=25x2×(2y)=50x2y(-5x)^2 \times (-2y) = 25x^2 \times (-2y) = -50x^2y
* (29) 6a×(b)3=6a×(b3)=6ab36a \times (-b)^3 = 6a \times (-b^3) = -6ab^3

3. 最終的な答え

* (30) 9a9a
* (31) 2x23a2-\frac{2x^2}{3a^2}
* (32) 16y16y
* (33) 2a-2a
* (34) 8x28x^2
* (35) 32a2b-32a^2b
* (36) 2x-2x
* (37) 4y2-4y^2
* (38) y=52xy = 5 - 2x
* (39) b=5a122b = \frac{5a - 12}{2}
* (40) c=2a3bc = 2a - 3b
* (25) 63ab-63ab
* (26) 8ab2-8ab^2
* (27) 16a2-16a^2
* (28) 50x2y-50x^2y
* (29) 6ab3-6ab^3