問題は以下の数列の一般項 $a_n$ を求める問題です。 (7) $S_n = 2n^2 + 5n$ である数列 $\{a_n\}$ (ア) $a_1 = 1$, $a_{n+1} = a_n + 6$ (イ) $a_1 = 2$, $a_{n+1} = 3a_n$ (ウ) $a_1 = 0$, $a_{n+1} = a_n + 3n^2$ (エ) $a_1 = 2$, $a_{n+1} = 3a_n - 2$

代数学数列一般項等差数列等比数列漸化式
2025/8/19

1. 問題の内容

問題は以下の数列の一般項 ana_n を求める問題です。
(7) Sn=2n2+5nS_n = 2n^2 + 5n である数列 {an}\{a_n\}
(ア) a1=1a_1 = 1, an+1=an+6a_{n+1} = a_n + 6
(イ) a1=2a_1 = 2, an+1=3ana_{n+1} = 3a_n
(ウ) a1=0a_1 = 0, an+1=an+3n2a_{n+1} = a_n + 3n^2
(エ) a1=2a_1 = 2, an+1=3an2a_{n+1} = 3a_n - 2

2. 解き方の手順

(7) SnS_n から ana_n を求める:
a1=S1=2(1)2+5(1)=7a_1 = S_1 = 2(1)^2 + 5(1) = 7
n2n \geq 2 のとき
an=SnSn1=(2n2+5n)[2(n1)2+5(n1)]=2n2+5n[2(n22n+1)+5n5]=2n2+5n(2n24n+2+5n5)=2n2+5n(2n2+n3)=4n+3a_n = S_n - S_{n-1} = (2n^2 + 5n) - [2(n-1)^2 + 5(n-1)] = 2n^2 + 5n - [2(n^2 - 2n + 1) + 5n - 5] = 2n^2 + 5n - (2n^2 - 4n + 2 + 5n - 5) = 2n^2 + 5n - (2n^2 + n - 3) = 4n + 3
a1=4(1)+3=7a_1 = 4(1) + 3 = 7 なので、an=4n+3a_n = 4n + 3n=1n=1 でも成立する。
よって、an=4n+3a_n = 4n + 3.
(ア) an+1=an+6a_{n+1} = a_n + 6 は等差数列なので、an=a1+(n1)da_n = a_1 + (n-1)d (ただし dd は公差)
a1=1a_1 = 1, d=6d=6 なので、an=1+(n1)6=1+6n6=6n5a_n = 1 + (n-1)6 = 1 + 6n - 6 = 6n - 5.
(イ) an+1=3ana_{n+1} = 3a_n は等比数列なので、an=a1rn1a_n = a_1 r^{n-1} (ただし rr は公比)
a1=2a_1 = 2, r=3r=3 なので、an=23n1a_n = 2 \cdot 3^{n-1}.
(ウ) an+1=an+3n2a_{n+1} = a_n + 3n^2
an+1an=3n2a_{n+1} - a_n = 3n^2
an=a1+k=1n13k2=0+3k=1n1k2=3(n1)n(2n2+1)6=(n1)n(2n1)2=2n33n2+n2a_n = a_1 + \sum_{k=1}^{n-1} 3k^2 = 0 + 3\sum_{k=1}^{n-1} k^2 = 3 \cdot \frac{(n-1)n(2n-2+1)}{6} = \frac{(n-1)n(2n-1)}{2} = \frac{2n^3 - 3n^2 + n}{2}
an=n332n2+12na_n = n^3 - \frac{3}{2}n^2 + \frac{1}{2}n
(エ) an+1=3an2a_{n+1} = 3a_n - 2
an+11=3(an1)a_{n+1} - 1 = 3(a_n - 1)
bn=an1b_n = a_n - 1 とおくと、bn+1=3bnb_{n+1} = 3b_n
b1=a11=21=1b_1 = a_1 - 1 = 2 - 1 = 1
bn=b13n1=13n1=3n1b_n = b_1 \cdot 3^{n-1} = 1 \cdot 3^{n-1} = 3^{n-1}
an=bn+1=3n1+1a_n = b_n + 1 = 3^{n-1} + 1

3. 最終的な答え

(7) an=4n+3a_n = 4n + 3
(ア) an=6n5a_n = 6n - 5
(イ) an=23n1a_n = 2 \cdot 3^{n-1}
(ウ) an=n332n2+12n=n(n1)(2n1)2a_n = n^3 - \frac{3}{2}n^2 + \frac{1}{2}n = \frac{n(n-1)(2n-1)}{2}
(エ) an=3n1+1a_n = 3^{n-1} + 1