$x = \frac{1}{1+\sqrt{2}}$、$y = \frac{1}{1-\sqrt{2}}$ のとき、以下の式の値を求める問題です。 (1) $x+y$ (2) $xy$ (3) $x^2 + y^2$ (4) $x^3 + y^3$

代数学式の計算有理化平方根代入多項式
2025/8/19

1. 問題の内容

x=11+2x = \frac{1}{1+\sqrt{2}}y=112y = \frac{1}{1-\sqrt{2}} のとき、以下の式の値を求める問題です。
(1) x+yx+y
(2) xyxy
(3) x2+y2x^2 + y^2
(4) x3+y3x^3 + y^3

2. 解き方の手順

まず、xxyyをそれぞれ有理化します。
x=11+2=12(1+2)(12)=1212=121=21x = \frac{1}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1-\sqrt{2}}{1-2} = \frac{1-\sqrt{2}}{-1} = \sqrt{2}-1
y=112=1+2(12)(1+2)=1+212=1+21=12y = \frac{1}{1-\sqrt{2}} = \frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2})} = \frac{1+\sqrt{2}}{1-2} = \frac{1+\sqrt{2}}{-1} = -1-\sqrt{2}
(1) x+y=(21)+(12)=2112=2x+y = (\sqrt{2}-1)+(-1-\sqrt{2}) = \sqrt{2}-1-1-\sqrt{2} = -2
(2) xy=(21)(12)=(21)(2+1)=(21)=1xy = (\sqrt{2}-1)(-1-\sqrt{2}) = -(\sqrt{2}-1)(\sqrt{2}+1) = -(2-1) = -1
(3) x2+y2=(x+y)22xy=(2)22(1)=4+2=6x^2 + y^2 = (x+y)^2 - 2xy = (-2)^2 - 2(-1) = 4 + 2 = 6
(4) x3+y3=(x+y)(x2xy+y2)=(x+y)((x+y)23xy)=(2)((2)23(1))=(2)(4+3)=(2)(7)=14x^3+y^3 = (x+y)(x^2 - xy + y^2) = (x+y)((x+y)^2 - 3xy) = (-2)((-2)^2 - 3(-1)) = (-2)(4+3) = (-2)(7) = -14

3. 最終的な答え

(1) x+y=2x+y = -2
(2) xy=1xy = -1
(3) x2+y2=6x^2 + y^2 = 6
(4) x3+y3=14x^3 + y^3 = -14