We are given the equations $x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}$. We want to find possible solutions for $x, y, z$.

AlgebraEquationsSystems of EquationsAlgebraic Manipulation
2025/3/12

1. Problem Description

We are given the equations x+1y=y+1z=z+1xx + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}. We want to find possible solutions for x,y,zx, y, z.

2. Solution Steps

From the given equations, we have two equations:
x+1y=y+1zx + \frac{1}{y} = y + \frac{1}{z} and y+1z=z+1xy + \frac{1}{z} = z + \frac{1}{x}.
From the first equation, we have:
xy=1z1yx - y = \frac{1}{z} - \frac{1}{y}
xy=yzyzx - y = \frac{y - z}{yz}
From the second equation, we have:
yz=1x1zy - z = \frac{1}{x} - \frac{1}{z}
yz=zxxzy - z = \frac{z - x}{xz}
Substituting the second equation into the first, we have:
xy=zxxzyzx - y = \frac{\frac{z - x}{xz}}{yz}
xy=zxxyz2x - y = \frac{z - x}{xyz^2}
If x=yx = y, then x+1y=x+1x=y+1zx + \frac{1}{y} = x + \frac{1}{x} = y + \frac{1}{z}. Since x=yx = y, we have x+1z=z+1xx + \frac{1}{z} = z + \frac{1}{x}. This implies x=zx = z.
Thus, x=y=zx = y = z is a solution.
If x,y,zx, y, z are not all equal, then xy0x - y \ne 0, yz0y - z \ne 0, and zx0z - x \ne 0.
From xy=zxxyz2x - y = \frac{z - x}{xyz^2}, we get:
(xy)xyz2=zx(x - y)xyz^2 = z - x
Similarly, we can write:
y+1z=z+1xy + \frac{1}{z} = z + \frac{1}{x} implies
yz=1x1z=zxxzy - z = \frac{1}{x} - \frac{1}{z} = \frac{z - x}{xz}, so (yz)xz=zx(y - z)xz = z - x
z+1x=x+1yz + \frac{1}{x} = x + \frac{1}{y} implies
zx=1y1x=xyxyz - x = \frac{1}{y} - \frac{1}{x} = \frac{x - y}{xy}, so (zx)xy=xy(z - x)xy = x - y
Multiplying the three equations, we get:
(xy)(yz)(zx)(xyz)2=(zx)(zx)(xy)(x - y)(y - z)(z - x) (xyz)^2 = (z - x)(z - x)(x - y)
(xy)(yz)(zx)(xyz)2=(xy)(zx)2(x - y)(y - z)(z - x) (xyz)^2 = (x - y)(z - x)^2.
Since x,y,zx, y, z are not all equal, (xy)(yz)(zx)0(x - y)(y - z)(z - x) \ne 0.
So, (xyz)2=1(xyz)^2 = 1.
xyz=±1xyz = \pm 1.
If xyz=1xyz = 1, then
xy=zxz/xyz2=yzyzx - y = \frac{z - x}{z/xy z^2}=\frac{y-z}{yz}
(xy)=zxxyzz=zx(x - y) = \frac{z - x}{xyz} z = z - x so we get xyz2=1xyz^2 = 1
Since (yz)xz=zx(y - z)xz = z - x, and zx=(xy)xyz=xyz - x = (x - y)xyz = x - y
(yz)xz=xy(y - z)xz = x - y which gives us :
xyz=1,xyz=1, and (xy)=zx(x-y) = z-x.
We have (yz)xz=zx(y - z)xz = z - x. If xyz=1xyz = 1, then z=1xyz = \frac{1}{xy}.
x+1y=y+1zx + \frac{1}{y} = y + \frac{1}{z}
x+1y=y+xyx + \frac{1}{y} = y + xy
xy=xy1yx - y = xy - \frac{1}{y}
xy=xy21yx - y = \frac{xy^2 - 1}{y}
y+1z=z+1xy + \frac{1}{z} = z + \frac{1}{x}
y+xy=1xy+1xy + xy = \frac{1}{xy} + \frac{1}{x}
y+xy=1+yxyy + xy = \frac{1 + y}{xy}
xy2+x2y2=1+yxy^2 + x^2 y^2 = 1 + y
When x=1,y=1,z=1x = 1, y = 1, z = 1 (or x=y=z=1x = y = z = 1), the equations hold.
When x=1,y=1,z=1x = 1, y = -1, z = -1 xyz=1xyz=1, equations hold.
xyz=1,xyz=-1, then we get (xy)=z+x(x-y) = -z+x.
If we let x=1,y=2x=1, y = 2.
1+12=2+1z1 + \frac{1}{2} = 2 + \frac{1}{z} then 32=2+1z\frac{3}{2} = 2 + \frac{1}{z} means 1z=322=12\frac{1}{z} = \frac{3}{2} - 2 = -\frac{1}{2}.
So z=2z = -2. Then xyz=12(2)=4xyz = 1 \cdot 2 \cdot (-2) = -4. Not ±1\pm 1. So, no result there.
However, when x=y=zx = y = z, the equation x+1x=x+1x=x+1xx + \frac{1}{x} = x + \frac{1}{x} = x + \frac{1}{x} holds.

3. Final Answer

x=y=zx=y=z is a solution.

Related problems in "Algebra"

Find the range of $k$ such that the inequality $x^2 + (k+3)x + k+3 > 0$ holds for all real numbers $...

Quadratic InequalityDiscriminantInequalities
2025/4/5

We are given a quadratic function $y = x^2 + (k+3)x + k+3$. We need to find the range of values for ...

Quadratic EquationsDiscriminantInequalitiesRoots of Quadratic EquationsInterval Notation
2025/4/5

Given that $\sin \alpha = \frac{\sqrt{3}}{2}$ and $0 < \alpha < \pi$, find $\cos \alpha$, $\tan \alp...

TrigonometryTrigonometric IdentitiesSineCosineTangentCotangent
2025/4/5

The problem asks us to use the given graph to determine which of the following intervals is part of ...

InequalitiesRational FunctionsInterval NotationCritical Points
2025/4/5

Joe and Jim together can mow a lawn in 6 hours. Joe alone can mow the same lawn in 10 hours. The que...

Work ProblemsRate ProblemsWord ProblemsLinear EquationsFractions
2025/4/5

We are asked to find an equivalent inequality to $3x - 2 < \frac{x+4}{x-2}$.

InequalitiesAlgebraic ManipulationRational Expressions
2025/4/5

The problem asks us to determine the equation of the rational function represented by the given grap...

Rational FunctionsAsymptotesGraph Analysis
2025/4/5

We need to solve the equation $\frac{x-6}{x+2} = \frac{x-4}{x+1}$ for $x$.

EquationsRational EquationsSolving Equations
2025/4/5

The problem asks us to find the equation for the reciprocal function of the parabola graphed in the ...

ParabolaReciprocal FunctionFunction TransformationQuadratic Functions
2025/4/5

The problem asks to find the vertical asymptote(s) of the function $f(x) = \frac{x-4}{x^2-16}$.

Rational FunctionsVertical AsymptotesLimitsAlgebraic Manipulation
2025/4/5