From the given equations, we have two equations:
x+y1=y+z1 and y+z1=z+x1. From the first equation, we have:
x−y=z1−y1 x−y=yzy−z From the second equation, we have:
y−z=x1−z1 y−z=xzz−x Substituting the second equation into the first, we have:
x−y=yzxzz−x x−y=xyz2z−x If x=y, then x+y1=x+x1=y+z1. Since x=y, we have x+z1=z+x1. This implies x=z. Thus, x=y=z is a solution. If x,y,z are not all equal, then x−y=0, y−z=0, and z−x=0. From x−y=xyz2z−x, we get: (x−y)xyz2=z−x Similarly, we can write:
y+z1=z+x1 implies y−z=x1−z1=xzz−x, so (y−z)xz=z−x z+x1=x+y1 implies z−x=y1−x1=xyx−y, so (z−x)xy=x−y Multiplying the three equations, we get:
(x−y)(y−z)(z−x)(xyz)2=(z−x)(z−x)(x−y) (x−y)(y−z)(z−x)(xyz)2=(x−y)(z−x)2. Since x,y,z are not all equal, (x−y)(y−z)(z−x)=0. So, (xyz)2=1. If xyz=1, then x−y=z/xyz2z−x=yzy−z (x−y)=xyzz−xz=z−x so we get xyz2=1 Since (y−z)xz=z−x, and z−x=(x−y)xyz=x−y (y−z)xz=x−y which gives us : xyz=1, and (x−y)=z−x. We have (y−z)xz=z−x. If xyz=1, then z=xy1. x+y1=y+z1 x+y1=y+xy x−y=xy−y1 x−y=yxy2−1 y+z1=z+x1 y+xy=xy1+x1 y+xy=xy1+y xy2+x2y2=1+y When x=1,y=1,z=1 (or x=y=z=1), the equations hold. When x=1,y=−1,z=−1 xyz=1, equations hold. xyz=−1, then we get (x−y)=−z+x. If we let x=1,y=2. 1+21=2+z1 then 23=2+z1 means z1=23−2=−21. So z=−2. Then xyz=1⋅2⋅(−2)=−4. Not ±1. So, no result there. However, when x=y=z, the equation x+x1=x+x1=x+x1 holds.