First, factor out the greatest common factor, which is 3:
3x6+81y6=3(x6+27y6) Now, observe that x6=(x2)3 and 27y6=(3y2)3. Thus, the expression within the parentheses is a sum of cubes. We can use the sum of cubes formula: a3+b3=(a+b)(a2−ab+b2) In our case, a=x2 and b=3y2. Therefore, we have: x6+27y6=(x2)3+(3y2)3=(x2+3y2)((x2)2−(x2)(3y2)+(3y2)2)=(x2+3y2)(x4−3x2y2+9y4) So the complete factored expression is:
3(x2+3y2)(x4−3x2y2+9y4)