The problem asks to simplify the expression $3x^6 + 81y^6$.

AlgebraPolynomial factorizationSum of cubesAlgebraic manipulation
2025/4/8

1. Problem Description

The problem asks to simplify the expression 3x6+81y63x^6 + 81y^6.

2. Solution Steps

First, factor out the greatest common factor, which is 3:
3x6+81y6=3(x6+27y6)3x^6 + 81y^6 = 3(x^6 + 27y^6)
Now, observe that x6=(x2)3x^6 = (x^2)^3 and 27y6=(3y2)327y^6 = (3y^2)^3. Thus, the expression within the parentheses is a sum of cubes. We can use the sum of cubes formula:
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)
In our case, a=x2a = x^2 and b=3y2b = 3y^2. Therefore, we have:
x6+27y6=(x2)3+(3y2)3=(x2+3y2)((x2)2(x2)(3y2)+(3y2)2)=(x2+3y2)(x43x2y2+9y4)x^6 + 27y^6 = (x^2)^3 + (3y^2)^3 = (x^2 + 3y^2)((x^2)^2 - (x^2)(3y^2) + (3y^2)^2) = (x^2 + 3y^2)(x^4 - 3x^2y^2 + 9y^4)
So the complete factored expression is:
3(x2+3y2)(x43x2y2+9y4)3(x^2 + 3y^2)(x^4 - 3x^2y^2 + 9y^4)

3. Final Answer

3(x2+3y2)(x43x2y2+9y4)3(x^2+3y^2)(x^4-3x^2y^2+9y^4)