We are given four inequalities to solve: 1. $x+4 \leq 3$

AlgebraInequalitiesLinear InequalitiesSolving Inequalities
2025/4/8

1. Problem Description

We are given four inequalities to solve:

1. $x+4 \leq 3$

2. $8m < 4$

3. $4x - 5 \geq 15$

4. $\frac{t}{3} + 7 > 10$

2. Solution Steps

1. Solve $x+4 \leq 3$:

Subtract 4 from both sides:
x+4434x+4-4 \leq 3-4
x1x \leq -1

2. Solve $8m < 4$:

Divide both sides by 8:
8m8<48\frac{8m}{8} < \frac{4}{8}
m<12m < \frac{1}{2}

3. Solve $4x - 5 \geq 15$:

Add 5 to both sides:
4x5+515+54x - 5 + 5 \geq 15 + 5
4x204x \geq 20
Divide both sides by 4:
4x4204\frac{4x}{4} \geq \frac{20}{4}
x5x \geq 5

4. Solve $\frac{t}{3} + 7 > 10$:

Subtract 7 from both sides:
t3+77>107\frac{t}{3} + 7 - 7 > 10 - 7
t3>3\frac{t}{3} > 3
Multiply both sides by 3:
3t3>333 \cdot \frac{t}{3} > 3 \cdot 3
t>9t > 9

3. Final Answer

1. $x \leq -1$

2. $m < \frac{1}{2}$

3. $x \geq 5$

4. $t > 9$