The problem is to simplify the expression $\frac{2}{3}(3x+2) - \frac{3}{4}(12x-3)$.

AlgebraAlgebraic simplificationLinear expressionsFractionsDistribution
2025/4/9

1. Problem Description

The problem is to simplify the expression 23(3x+2)34(12x3)\frac{2}{3}(3x+2) - \frac{3}{4}(12x-3).

2. Solution Steps

First, we distribute the fractions to the terms within the parentheses.
23(3x+2)=23(3x)+23(2)=2x+43\frac{2}{3}(3x+2) = \frac{2}{3}(3x) + \frac{2}{3}(2) = 2x + \frac{4}{3}
34(12x3)=34(12x)34(3)=9x+94-\frac{3}{4}(12x-3) = -\frac{3}{4}(12x) - \frac{3}{4}(-3) = -9x + \frac{9}{4}
Now, we combine the two expressions:
2x+439x+942x + \frac{4}{3} - 9x + \frac{9}{4}
Combine the xx terms and the constant terms:
(2x9x)+(43+94)(2x - 9x) + (\frac{4}{3} + \frac{9}{4})
7x+(43+94)-7x + (\frac{4}{3} + \frac{9}{4})
To add the fractions, we need a common denominator, which is 12:
43=4×43×4=1612\frac{4}{3} = \frac{4 \times 4}{3 \times 4} = \frac{16}{12}
94=9×34×3=2712\frac{9}{4} = \frac{9 \times 3}{4 \times 3} = \frac{27}{12}
So, 1612+2712=16+2712=4312\frac{16}{12} + \frac{27}{12} = \frac{16+27}{12} = \frac{43}{12}
Therefore, the simplified expression is:
7x+4312-7x + \frac{43}{12}

3. Final Answer

7x+4312-7x + \frac{43}{12}