We divide each term in the numerator by the denominator.
−3x2y−6x4y3+5x2y3−3x3y=−3x2y−6x4y3+−3x2y5x2y3−−3x2y3x3y Now simplify each term:
−3x2y−6x4y3=−3−6⋅x2x4⋅yy3=2x4−2y3−1=2x2y2 −3x2y5x2y3=−35⋅x2x2⋅yy3=−35x2−2y3−1=−35(1)y2=−35y2 −3x2y−3x3y=−3−3⋅x2x3⋅yy=1⋅x3−2⋅1=x So the expression becomes:
2x2y2−35y2+x