The problem is to simplify the expression $\frac{-6x^4y^3 + 5x^2y^3 - 3x^3y}{-3x^2y}$.

AlgebraPolynomialsSimplificationExponents
2025/4/9

1. Problem Description

The problem is to simplify the expression 6x4y3+5x2y33x3y3x2y\frac{-6x^4y^3 + 5x^2y^3 - 3x^3y}{-3x^2y}.

2. Solution Steps

We divide each term in the numerator by the denominator.
6x4y3+5x2y33x3y3x2y=6x4y33x2y+5x2y33x2y3x3y3x2y\frac{-6x^4y^3 + 5x^2y^3 - 3x^3y}{-3x^2y} = \frac{-6x^4y^3}{-3x^2y} + \frac{5x^2y^3}{-3x^2y} - \frac{3x^3y}{-3x^2y}
Now simplify each term:
6x4y33x2y=63x4x2y3y=2x42y31=2x2y2\frac{-6x^4y^3}{-3x^2y} = \frac{-6}{-3} \cdot \frac{x^4}{x^2} \cdot \frac{y^3}{y} = 2x^{4-2}y^{3-1} = 2x^2y^2
5x2y33x2y=53x2x2y3y=53x22y31=53(1)y2=53y2\frac{5x^2y^3}{-3x^2y} = \frac{5}{-3} \cdot \frac{x^2}{x^2} \cdot \frac{y^3}{y} = -\frac{5}{3} x^{2-2} y^{3-1} = -\frac{5}{3} (1) y^2 = -\frac{5}{3} y^2
3x3y3x2y=33x3x2yy=1x321=x\frac{-3x^3y}{-3x^2y} = \frac{-3}{-3} \cdot \frac{x^3}{x^2} \cdot \frac{y}{y} = 1 \cdot x^{3-2} \cdot 1 = x
So the expression becomes:
2x2y253y2+x2x^2y^2 - \frac{5}{3} y^2 + x

3. Final Answer

2x2y253y2+x2x^2y^2 - \frac{5}{3}y^2 + x