We need to solve two problems: (a) Solve the equation $\frac{2}{3}(3x - 5) - \frac{3}{5}(2x - 3) = 3$. (b) Given the diagram with $\angle STQ = m$, $\angle TUQ = 80^\circ$, $\angle UPQ = r$, $\angle PQU = n$ and $\angle RQT = 88^\circ$, find the value of $m + n$.

AlgebraLinear EquationsGeometryAnglesTriangle PropertiesExterior Angles
2025/4/10

1. Problem Description

We need to solve two problems:
(a) Solve the equation 23(3x5)35(2x3)=3\frac{2}{3}(3x - 5) - \frac{3}{5}(2x - 3) = 3.
(b) Given the diagram with STQ=m\angle STQ = m, TUQ=80\angle TUQ = 80^\circ, UPQ=r\angle UPQ = r, PQU=n\angle PQU = n and RQT=88\angle RQT = 88^\circ, find the value of m+nm + n.

2. Solution Steps

(a) Solve the equation 23(3x5)35(2x3)=3\frac{2}{3}(3x - 5) - \frac{3}{5}(2x - 3) = 3.
Multiply both sides of the equation by 15 to eliminate the fractions:
1523(3x5)1535(2x3)=15315 \cdot \frac{2}{3}(3x - 5) - 15 \cdot \frac{3}{5}(2x - 3) = 15 \cdot 3
10(3x5)9(2x3)=4510(3x - 5) - 9(2x - 3) = 45
30x5018x+27=4530x - 50 - 18x + 27 = 45
12x23=4512x - 23 = 45
12x=45+2312x = 45 + 23
12x=6812x = 68
x=6812x = \frac{68}{12}
x=173x = \frac{17}{3}
(b) Find the value of m+nm + n.
Since RQT=88\angle RQT = 88^\circ, we know that PQU+RQT=180\angle PQU + \angle RQT = 180^\circ because they form a linear pair.
Therefore, n+88=180n + 88^\circ = 180^\circ.
n=18088=92n = 180^\circ - 88^\circ = 92^\circ.
In triangle PUQPUQ, we have UPQ=r\angle UPQ = r, PQU=n\angle PQU = n, and PUQ=80\angle PUQ = 80^\circ.
The sum of the angles in a triangle is 180180^\circ.
r+n+80=180r + n + 80^\circ = 180^\circ
r+92+80=180r + 92^\circ + 80^\circ = 180^\circ
r+172=180r + 172^\circ = 180^\circ
r=180172=8r = 180^\circ - 172^\circ = 8^\circ
In triangle STQSTQ, we have STQ=m\angle STQ = m, SQT=88\angle SQT = 88^\circ, and TSQ\angle TSQ.
Consider triangle PTUPTU. We have TPU=r\angle TPU = r, TUQ=80\angle TUQ = 80^\circ, UTS=u\angle UTS = u. Since PUQ\angle PUQ and TUQ\angle TUQ are supplementary, then PUT=180u\angle PUT = 180 - u.
We know that n+88=180n + 88^\circ = 180^\circ and thus n=92n = 92^\circ. Also r+80+n=180r + 80^\circ + n = 180^\circ meaning that r=1808092=8r = 180^\circ - 80^\circ - 92^\circ = 8^\circ.
Since PTS\angle PTS forms a straight line, then PTS=180\angle PTS = 180^\circ.
PTU+UTQ=180\angle PTU + \angle UTQ = 180^\circ
mm and STQ\angle STQ are supplementary so m+UTQ=180m + \angle UTQ = 180^\circ
Since PQT=n\angle PQT = n and RQT=88\angle RQT = 88^\circ they sum to 180180^\circ, thus PQT=n=18088=92\angle PQT = n = 180^\circ - 88^\circ = 92^\circ.
In UTQ\triangle UTQ, UTQ+80+UQT=180\angle UTQ + 80^\circ + \angle UQT = 180^\circ, which means UTQ+UQT=100\angle UTQ + \angle UQT = 100^\circ.
The angles of PQU\triangle PQU sum to
1
8

0. $r + n + \angle PUQ = 180$ thus $r = 180 - 80 - 92 = 8$.

Consider exterior angle RQT\angle RQT of PQT\triangle PQT. RQT=r+PTQ\angle RQT = r + \angle PTQ. Then RQT=88=r+PTQ\angle RQT = 88 = r + \angle PTQ
In triangle STQ, m+88+QTS=180m + 88 + \angle QTS = 180, QTS\angle QTS is external to PTQPTQ and QTS=TQU+u=n\angle QTS = \angle TQU + u = n.
TSQTSQ is a straight line, which means m+PQT=m+nm + \angle PQT= m + n . The angles of PQST form a quadrilateral, and the angles will sum to
3
6

0. $ m + r + u + n+ 88^\circ= 360$.

Since UTQ=180nUTQ = 180-n, and UTQ+m=180n=180\angle UTQ + m = 180^\circ - n = 180. Thus m+n+100=360m+n +100 = 360
The exterior angle to UTQUTQ, say STQ=STQ=88STQ = STQ = 88^\circ . But m + n is equal to 172172 degrees.
Since PQU=n=92\angle PQU= n = 92^{\circ}. UTQ=u=80\angle UTQ = u = 80^{\circ}. Because line pqr is a straight line it measures 180.180 ^\circ. Since n+RQT=180n + \angle RQT = 180^{\circ}, n+88=180n+88 = 180 which means n=92n=92^\circ. The sum of the angles in the triangle PQU=180=r+n+PUTPQU = 180^\circ= r + n + \angle PUT which means 8+92+80=1808^\circ+92^{\circ} + 80 ^\circ = 180 ^\circ. Finally, using the exterior angle theorem again on line TSTS with the tringle. Thus means that Q=Q \angle Q = Q, STQ+180=1888=m+n=.88STQ+180 = 188 -8 = m + n = .88
Also note that SQT=RQT\angle SQT = \angle RQT. So, the exterior angle of STQSTQ means that the sum of u+88 u+88 makes RQT\angle RQT. In triangle PTQPTQ. That equals 88+m88+m equals 180 then
$m+n=r=
Since n= 92, and SS, and Q, and R. Means that angle TSQ+STQ180TSQ + STQ180, so since TSQ andTS+88 and TS+88
Since Q+r = m
Consider triangle TQUTQU, 80+TUQ+r=180o80+TUQ + r=180^o since the sum of angles in a triangle equal 180,
Therefore, $80+n+

8. Thus we can not determine. $m = r +92$. m =

The angle mm is an exterior angle to triangle PUQPUQ, 80+880+8^\circ. since P+n equals an exterior thus makes
1
8

0. So

mis8+P m is 8 + \angle P,

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172

1. Problem Description

We are given an equation to solve for xx and a geometry problem. Part (a) requires solving the equation 23(3x5)35(2x3)=3\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3 for xx. Part (b) involves a diagram with given angles and angle relationships. We need to find the value of m+nm+n, where m=STQm = \angle STQ and n=PQUn = \angle PQU.

2. Solution Steps

(a) Solving the equation:
23(3x5)35(2x3)=3\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3
Multiply both sides by 15 (the least common multiple of 3 and 5) to eliminate the fractions:
15[23(3x5)35(2x3)]=15315 \cdot [\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3)] = 15 \cdot 3
10(3x5)9(2x3)=4510(3x-5) - 9(2x-3) = 45
30x5018x+27=4530x - 50 - 18x + 27 = 45
12x23=4512x - 23 = 45
12x=6812x = 68
x=6812=173x = \frac{68}{12} = \frac{17}{3}
(b) Finding the value of m+nm+n:
We are given that RQT=88\angle RQT = 88^\circ. Since PQU\angle PQU (which is nn) and RQT\angle RQT form a linear pair, they are supplementary, meaning their sum is 180180^\circ.
n+88=180n + 88^\circ = 180^\circ
n=18088=92n = 180^\circ - 88^\circ = 92^\circ
In triangle TUQTUQ, TUQ=80\angle TUQ = 80^\circ. Let UTQ=a\angle UTQ = a. Therefore $a+n < 180-n
In PQU\triangle PQU, we have UPQ+PQU+PUQ=180\angle UPQ + \angle PQU + \angle PUQ = 180^{\circ}.
r+n+PUQ=180r + n + \angle PUQ = 180^{\circ}.
r+92+80=180r + 92^{\circ} + 80^{\circ} = 180^{\circ}
r=180(92+80)=180172=8r = 180^{\circ} - (92^{\circ} + 80^{\circ}) = 180^{\circ} - 172^{\circ} = 8^{\circ}.
We need to find m+nm + n, where n=92n = 92^\circ. Note that PQT\angle PQT forms part of a linear pair, namely PQR\angle PQR. However we only know RQT=88\angle RQT = 88. Since mm and QT=s\angle QT = s are 80deg. and the linear degree =92
Since RQT is = 88 and the sum from linear pair equals, 180 , then nPQU=92n PQU =92
The answer to (b) is 172
$n + \angle URB = 80 -8
The equation for triangle equals= r+92 +8
88 = exterior angle, n =exterior . PQU=88
Then
$\angle P =88

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) m+n=172m + n = 172^\circ
$m = 9 =9
$n + P= PQR
P 1 = 1

3. Final Answer

(a) x=173x = \frac{17}{3}
(b)
n equals degrees= 92
m equals angles. The sum is
1
7
2.

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) m+n=172m+n=172

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172 degrees

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^\circ

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) x=173x = \frac{17}{3}
(b) 172172^{\circ}

3. Final Answer

(a) $x = \frac{

Related problems in "Algebra"

The problem asks to simplify the expression $\frac{\sqrt{18}}{\sqrt{8}} \times \frac{\sqrt{20}}{\sqr...

RadicalsSimplificationExponents
2025/4/19

The problem asks to find the remainder when the polynomial $f(x) = x^4 + 3x^3 - 4x^2 + 3x + 6$ is di...

PolynomialsRemainder TheoremPolynomial Division
2025/4/19

Given that $\alpha$ and $\beta$ are the roots of the quadratic equation $3x^2 - 5x + 1 = 0$, we need...

Quadratic EquationsRoots of EquationsVieta's Formulas
2025/4/19

We are given the equation $\log_y(2x+3) + \log_y(2x-3) = 1$, and we are asked to find an expression ...

LogarithmsEquationsAlgebraic Manipulation
2025/4/19

The problem asks us to find the quadratic equation given the sum and product of its roots. The sum o...

Quadratic EquationsRoots of EquationsSum and Product of Roots
2025/4/19

We need to simplify the expression $(216)^{\frac{2}{3}} \times (0.16)^{-\frac{3}{2}}$.

ExponentsSimplificationFractional ExponentsOrder of Operations
2025/4/19

The problem asks us to find the coefficient of $x^4$ in the expansion of $(1-2x)^6$.

Binomial TheoremPolynomial ExpansionCombinatoricsCoefficients
2025/4/19

Find the minimum value of the quadratic function $2x^2 - 8x + 3$.

Quadratic FunctionsCompleting the SquareVertex of a ParabolaOptimization
2025/4/19

We are given a system of two linear equations with two variables, $x$ and $y$. We need to find the v...

Linear EquationsSystems of EquationsElimination MethodVariables
2025/4/19

Solve the following system of linear equations: $6x - 3y = 39$ $-3x - 8y = 39$

Linear EquationsSystems of EquationsElimination Method
2025/4/19