The problem is to evaluate the expression $\frac{4.2 \times 10^{-4} \times 5.6}{1.04 \times 10^{7}}$.

ArithmeticScientific NotationExponentsOrder of OperationsDecimal Arithmetic
2025/4/10

1. Problem Description

The problem is to evaluate the expression 4.2×104×5.61.04×107\frac{4.2 \times 10^{-4} \times 5.6}{1.04 \times 10^{7}}.

2. Solution Steps

First, we multiply the numbers in the numerator:
4.2×5.6=23.524.2 \times 5.6 = 23.52
So the expression becomes:
23.52×1041.04×107\frac{23.52 \times 10^{-4}}{1.04 \times 10^{7}}
Next, we divide the numbers:
23.521.0422.6153846\frac{23.52}{1.04} \approx 22.6153846
Then, we handle the powers of 10:
104107=1047=1011\frac{10^{-4}}{10^{7}} = 10^{-4 - 7} = 10^{-11}
Therefore, the expression becomes:
22.6153846×101122.6153846 \times 10^{-11}
We should write this in scientific notation, which means moving the decimal point so that the number is between 1 and
1

0. So we have

2.26153846×101×10112.26153846 \times 10^{1} \times 10^{-11}
Combining the powers of 10:
2.26153846×10111=2.26153846×10102.26153846 \times 10^{1 - 11} = 2.26153846 \times 10^{-10}
Rounding to two significant figures gives 2.3×10102.3 \times 10^{-10}.

3. Final Answer

2.3×10102.3 \times 10^{-10}