The problem is to evaluate the following expression: $\frac{4.2 \times 10^{-4} \times 5.6 \times 10^{0}}{1.04 \times 10^{7}}$

ArithmeticScientific NotationExponentsDecimal OperationsOrder of Operations
2025/4/10

1. Problem Description

The problem is to evaluate the following expression:
4.2×104×5.6×1001.04×107\frac{4.2 \times 10^{-4} \times 5.6 \times 10^{0}}{1.04 \times 10^{7}}

2. Solution Steps

First, rewrite the expression as
4.2×5.6×1041.04×107\frac{4.2 \times 5.6 \times 10^{-4}}{1.04 \times 10^{7}}
Calculate the product of the constants in the numerator:
4.2×5.6=23.524.2 \times 5.6 = 23.52
So the expression becomes
23.52×1041.04×107\frac{23.52 \times 10^{-4}}{1.04 \times 10^{7}}
Now, divide the constants:
23.521.0422.615\frac{23.52}{1.04} \approx 22.615
So the expression becomes
22.615×10410722.615 \times \frac{10^{-4}}{10^{7}}
Using the rule for dividing exponents: aman=amn\frac{a^m}{a^n} = a^{m-n},
104107=1047=1011\frac{10^{-4}}{10^{7}} = 10^{-4-7} = 10^{-11}
Thus, the expression is
22.615×101122.615 \times 10^{-11}
To express the answer in scientific notation, we write
2.2615×101×1011=2.2615×10111=2.2615×10102.2615 \times 10^{1} \times 10^{-11} = 2.2615 \times 10^{1-11} = 2.2615 \times 10^{-10}

3. Final Answer

2.2615×10102.2615 \times 10^{-10}