We are asked to solve several addition and subtraction problems involving numbers in scientific notation.

ArithmeticScientific NotationAdditionSubtractionExponents
2025/4/10

1. Problem Description

We are asked to solve several addition and subtraction problems involving numbers in scientific notation.

2. Solution Steps

1. $(6 \times 10^4) + (2.55 \times 10^4)$

Since the powers of 10 are the same, we can add the coefficients:
(6+2.55)×104=8.55×104(6 + 2.55) \times 10^4 = 8.55 \times 10^4

2. $(8.5 \times 10^7) + (7.25 \times 10^7)$

Since the powers of 10 are the same, we can add the coefficients:
(8.5+7.25)×107=15.75×107(8.5 + 7.25) \times 10^7 = 15.75 \times 10^7
We can rewrite this in proper scientific notation:
15.75×107=1.575×101×107=1.575×10815.75 \times 10^7 = 1.575 \times 10^1 \times 10^7 = 1.575 \times 10^8

3. $(9 \times 10^{-5}) - (5.4 \times 10^{-5})$

Since the powers of 10 are the same, we can subtract the coefficients:
(95.4)×105=3.6×105(9 - 5.4) \times 10^{-5} = 3.6 \times 10^{-5}

4. $(3.7 \times 10^9) - (3.205 \times 10^9)$

Since the powers of 10 are the same, we can subtract the coefficients:
(3.73.205)×109=0.495×109(3.7 - 3.205) \times 10^9 = 0.495 \times 10^9

5. $(6.15 \times 10^{12}) + (9.8 \times 10^{13})$

We need to make the powers of 10 the same. We can rewrite 6.15×10126.15 \times 10^{12} as 0.615×10130.615 \times 10^{13}.
Now we can add:
(0.615×1013)+(9.8×1013)=(0.615+9.8)×1013=10.415×1013=1.0415×1014(0.615 \times 10^{13}) + (9.8 \times 10^{13}) = (0.615 + 9.8) \times 10^{13} = 10.415 \times 10^{13} = 1.0415 \times 10^{14}

6. $(4.39 \times 10^{10}) - (7.6 \times 10^9)$

We need to make the powers of 10 the same. We can rewrite 7.6×1097.6 \times 10^9 as 0.76×10100.76 \times 10^{10}
Now we can subtract:
(4.39×1010)(0.76×1010)=(4.390.76)×1010=3.63×1010(4.39 \times 10^{10}) - (0.76 \times 10^{10}) = (4.39 - 0.76) \times 10^{10} = 3.63 \times 10^{10}

7. $(1.4 \times 10^6) - (7.63 \times 10^5)$

We need to make the powers of 10 the same. We can rewrite 7.63×1057.63 \times 10^5 as 0.763×1060.763 \times 10^6
(1.4×106)(0.763×106)=(1.40.763)×106=0.637×106(1.4 \times 10^6) - (0.763 \times 10^6) = (1.4-0.763) \times 10^6 = 0.637 \times 10^6

8. $(9.37 \times 10^8) + (9.41 \times 10^7)$

We need to make the powers of 10 the same. We can rewrite 9.41×1079.41 \times 10^7 as 0.941×1080.941 \times 10^8
(9.37×108)+(0.941×108)=(9.37+0.941)×108=10.311×108=1.0311×109(9.37 \times 10^8) + (0.941 \times 10^8) = (9.37 + 0.941) \times 10^8 = 10.311 \times 10^8 = 1.0311 \times 10^9

9. $(7.49 \times 10^{-4}) + (8 \times 10^{-5})$

We need to make the powers of 10 the same. We can rewrite 8×1058 \times 10^{-5} as 0.8×1040.8 \times 10^{-4}.
(7.49×104)+(0.8×104)=(7.49+0.8)×104=8.29×104(7.49 \times 10^{-4}) + (0.8 \times 10^{-4}) = (7.49 + 0.8) \times 10^{-4} = 8.29 \times 10^{-4}
1

0. $(6.05 \times 10^{-10}) - (5 \times 10^{-11})$

We need to make the powers of 10 the same. We can rewrite 5×10115 \times 10^{-11} as 0.5×10100.5 \times 10^{-10}.
(6.05×1010)(0.5×1010)=(6.050.5)×1010=5.55×1010(6.05 \times 10^{-10}) - (0.5 \times 10^{-10}) = (6.05 - 0.5) \times 10^{-10} = 5.55 \times 10^{-10}
1

1. $(1.8 \times 10^{15}) - (8.75 \times 10^{14})$

We need to make the powers of 10 the same. We can rewrite 8.75×10148.75 \times 10^{14} as 0.875×10150.875 \times 10^{15}.
(1.8×1015)(0.875×1015)=(1.80.875)×1015=0.925×1015(1.8 \times 10^{15}) - (0.875 \times 10^{15}) = (1.8 - 0.875) \times 10^{15} = 0.925 \times 10^{15}
1

2. $(9.9 \times 10^{-7}) + (9.8 \times 10^{-6})$

We need to make the powers of 10 the same. We can rewrite 9.9×1079.9 \times 10^{-7} as 0.99×1060.99 \times 10^{-6}.
(0.99×106)+(9.8×106)=(0.99+9.8)×106=10.79×106=1.079×105(0.99 \times 10^{-6}) + (9.8 \times 10^{-6}) = (0.99 + 9.8) \times 10^{-6} = 10.79 \times 10^{-6} = 1.079 \times 10^{-5}

3. Final Answer

1. $8.55 \times 10^4$

2. $1.575 \times 10^8$

3. $3.6 \times 10^{-5}$

4. $0.495 \times 10^9$

5. $1.0415 \times 10^{14}$

6. $3.63 \times 10^{10}$

7. $0.637 \times 10^6$

8. $1.0311 \times 10^9$

9. $8.29 \times 10^{-4}$

1

0. $5.55 \times 10^{-10}$

1

1. $0.925 \times 10^{15}$

1

2. $1.079 \times 10^{-5}$