The problem asks: What number should be subtracted from the sum of $2\frac{1}{6}$ and $2\frac{7}{12}$ to give $3\frac{1}{4}$?

ArithmeticFractionsMixed NumbersSubtractionArithmetic Operations
2025/4/11

1. Problem Description

The problem asks: What number should be subtracted from the sum of 2162\frac{1}{6} and 27122\frac{7}{12} to give 3143\frac{1}{4}?

2. Solution Steps

Let xx be the number that should be subtracted.
We can set up the equation:
(216+2712)x=314(2\frac{1}{6} + 2\frac{7}{12}) - x = 3\frac{1}{4}
First, convert the mixed numbers to improper fractions:
216=2×6+16=1362\frac{1}{6} = \frac{2 \times 6 + 1}{6} = \frac{13}{6}
2712=2×12+712=31122\frac{7}{12} = \frac{2 \times 12 + 7}{12} = \frac{31}{12}
314=3×4+14=1343\frac{1}{4} = \frac{3 \times 4 + 1}{4} = \frac{13}{4}
Now, substitute the improper fractions into the equation:
(136+3112)x=134(\frac{13}{6} + \frac{31}{12}) - x = \frac{13}{4}
Find a common denominator for 136\frac{13}{6} and 3112\frac{31}{12}, which is
1

2. $\frac{13}{6} = \frac{13 \times 2}{6 \times 2} = \frac{26}{12}$

So, the equation becomes:
(2612+3112)x=134(\frac{26}{12} + \frac{31}{12}) - x = \frac{13}{4}
26+3112x=134\frac{26+31}{12} - x = \frac{13}{4}
5712x=134\frac{57}{12} - x = \frac{13}{4}
Now, find a common denominator for 5712\frac{57}{12} and 134\frac{13}{4}, which is
1

2. $\frac{13}{4} = \frac{13 \times 3}{4 \times 3} = \frac{39}{12}$

The equation is now:
5712x=3912\frac{57}{12} - x = \frac{39}{12}
x=57123912x = \frac{57}{12} - \frac{39}{12}
x=573912x = \frac{57 - 39}{12}
x=1812x = \frac{18}{12}
Simplify the fraction:
x=6×36×2=32x = \frac{6 \times 3}{6 \times 2} = \frac{3}{2}
Convert the improper fraction to a mixed number:
x=112x = 1\frac{1}{2}

3. Final Answer

1121\frac{1}{2}