We need to find the mean of the following mixed numbers, rounded to two decimal places: $1\frac{1}{2}$, $2\frac{2}{3}$, $3\frac{3}{4}$, $4\frac{4}{5}$, and $5\frac{5}{6}$.

ArithmeticFractionsMixed NumbersMeanArithmetic OperationsDecimal ConversionLeast Common Multiple
2025/4/11

1. Problem Description

We need to find the mean of the following mixed numbers, rounded to two decimal places: 1121\frac{1}{2}, 2232\frac{2}{3}, 3343\frac{3}{4}, 4454\frac{4}{5}, and 5565\frac{5}{6}.

2. Solution Steps

First, convert the mixed numbers to improper fractions:
112=1×2+12=321\frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{3}{2}
223=2×3+23=832\frac{2}{3} = \frac{2 \times 3 + 2}{3} = \frac{8}{3}
334=3×4+34=1543\frac{3}{4} = \frac{3 \times 4 + 3}{4} = \frac{15}{4}
445=4×5+45=2454\frac{4}{5} = \frac{4 \times 5 + 4}{5} = \frac{24}{5}
556=5×6+56=3565\frac{5}{6} = \frac{5 \times 6 + 5}{6} = \frac{35}{6}
Next, find the mean by adding the fractions and dividing by the number of fractions (which is 5):
Mean = 32+83+154+245+3565\frac{\frac{3}{2} + \frac{8}{3} + \frac{15}{4} + \frac{24}{5} + \frac{35}{6}}{5}
To add the fractions, find a common denominator. The least common multiple of 2, 3, 4, 5, and 6 is
6

0. Convert the fractions:

32=3×302×30=9060\frac{3}{2} = \frac{3 \times 30}{2 \times 30} = \frac{90}{60}
83=8×203×20=16060\frac{8}{3} = \frac{8 \times 20}{3 \times 20} = \frac{160}{60}
154=15×154×15=22560\frac{15}{4} = \frac{15 \times 15}{4 \times 15} = \frac{225}{60}
245=24×125×12=28860\frac{24}{5} = \frac{24 \times 12}{5 \times 12} = \frac{288}{60}
356=35×106×10=35060\frac{35}{6} = \frac{35 \times 10}{6 \times 10} = \frac{350}{60}
Now, add the fractions:
9060+16060+22560+28860+35060=90+160+225+288+35060=111360\frac{90}{60} + \frac{160}{60} + \frac{225}{60} + \frac{288}{60} + \frac{350}{60} = \frac{90 + 160 + 225 + 288 + 350}{60} = \frac{1113}{60}
Divide the sum by 5:
Mean = 1113605=111360×5=1113300\frac{\frac{1113}{60}}{5} = \frac{1113}{60 \times 5} = \frac{1113}{300}
Now, convert the fraction to a decimal:
1113300=3.71\frac{1113}{300} = 3.71

3. Final Answer

3. 71