First, we need to find the midpoints of each height interval. Let's call them xi. x1=(60+64)/2=62 x2=(65+69)/2=67 x3=(70+74)/2=72 x4=(75+79)/2=77 x5=(80+84)/2=82 The frequencies are f1=7, f2=6, f3=5, f4=8, f5=4. The total frequency is N=7+6+5+8+4=30. (i) Mean:
The formula for the mean of a grouped distribution is:
xˉ=∑fi∑fixi=N∑fixi ∑fixi=(7×62)+(6×67)+(5×72)+(8×77)+(4×82)=434+402+360+616+328=2140 xˉ=302140=71.333...≈71.3 (ii) Variance:
The formula for the variance of a grouped distribution is:
s2=N−1∑fi(xi−xˉ)2 or s2=N−1∑fixi2−N(N−1)(∑fixi)2. However, since the mean we calculated is rounded, let's use s2=N−1∑fi(xi−xˉ)2 First we must find ∑fi(xi−xˉ)2 (x1−xˉ)2=(62−71.3)2=(−9.3)2=86.49 (x2−xˉ)2=(67−71.3)2=(−4.3)2=18.49 (x3−xˉ)2=(72−71.3)2=(0.7)2=0.49 (x4−xˉ)2=(77−71.3)2=(5.7)2=32.49 (x5−xˉ)2=(82−71.3)2=(10.7)2=114.49 f1(x1−xˉ)2=7×86.49=605.43 f2(x2−xˉ)2=6×18.49=110.94 f3(x3−xˉ)2=5×0.49=2.45 f4(x4−xˉ)2=8×32.49=259.92 f5(x5−xˉ)2=4×114.49=457.96 ∑fi(xi−xˉ)2=605.43+110.94+2.45+259.92+457.96=1436.7 s2=30−11436.7=291436.7=49.5413...≈49.5