Exercise 11: Find all real numbers $x$ and $y$ in the interval $[0, 2\pi)$ such that $\begin{cases} \sin x + \sin y = \frac{3}{2} \\ \sin x \sin y = \frac{1}{2} \end{cases}$ Exercise 12: 1. Express $\cos(3x)$ in terms of $\cos x$ and $\sin(3x)$ in terms of $\sin x$.

AlgebraTrigonometryEquationsTrigonometric IdentitiesQuadratic EquationsSolution Sets
2025/4/14

1. Problem Description

Exercise 11: Find all real numbers xx and yy in the interval [0,2π)[0, 2\pi) such that
{sinx+siny=32sinxsiny=12\begin{cases} \sin x + \sin y = \frac{3}{2} \\ \sin x \sin y = \frac{1}{2} \end{cases}
Exercise 12:

1. Express $\cos(3x)$ in terms of $\cos x$ and $\sin(3x)$ in terms of $\sin x$.

2. Prove that $\tan(3x) = \tan x \cdot \frac{3 - \tan^2 x}{1 - 3\tan^2 x}$.

Exercise 13:

1. Calculate $(\sqrt{3} + \sqrt{2})^2$.

2. Solve the equation $4x^2 + 2x(\sqrt{3} - \sqrt{2}) - \sqrt{6} = 0$ in $\mathbb{R}$.

3. Deduce the solutions in $[0, 2\pi)$ of the equation $-4\sin^2 y + 2(\sqrt{3} + \sqrt{2}) \cos y - \sqrt{6} + 4 = 0$ and place the images of the solutions of this equation on the trigonometric circle.

2. Solution Steps

Exercise 11:
Let u=sinxu = \sin x and v=sinyv = \sin y. We have
{u+v=32uv=12\begin{cases} u + v = \frac{3}{2} \\ uv = \frac{1}{2} \end{cases}
Then uu and vv are the roots of the quadratic equation
t2(u+v)t+uv=0t^2 - (u+v)t + uv = 0, which is t232t+12=0t^2 - \frac{3}{2}t + \frac{1}{2} = 0.
Multiplying by 2, we get 2t23t+1=02t^2 - 3t + 1 = 0.
Then (2t1)(t1)=0(2t - 1)(t - 1) = 0, so t=1t = 1 or t=12t = \frac{1}{2}.
Thus, sinx=1\sin x = 1 and siny=12\sin y = \frac{1}{2}, or sinx=12\sin x = \frac{1}{2} and siny=1\sin y = 1.
If sinx=1\sin x = 1, then x=π2x = \frac{\pi}{2}. If siny=12\sin y = \frac{1}{2}, then y=π6y = \frac{\pi}{6} or y=5π6y = \frac{5\pi}{6}.
If sinx=12\sin x = \frac{1}{2}, then x=π6x = \frac{\pi}{6} or x=5π6x = \frac{5\pi}{6}. If siny=1\sin y = 1, then y=π2y = \frac{\pi}{2}.
Therefore, the solutions are (x,y)=(π2,π6)(x, y) = (\frac{\pi}{2}, \frac{\pi}{6}), (x,y)=(π2,5π6)(x, y) = (\frac{\pi}{2}, \frac{5\pi}{6}), (x,y)=(π6,π2)(x, y) = (\frac{\pi}{6}, \frac{\pi}{2}), (x,y)=(5π6,π2)(x, y) = (\frac{5\pi}{6}, \frac{\pi}{2}).
Exercise 12:

1. $\cos(3x) = \cos(2x + x) = \cos(2x) \cos x - \sin(2x) \sin x = (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x = 2\cos^3 x - \cos x - 2\sin^2 x \cos x = 2\cos^3 x - \cos x - 2(1 - \cos^2 x) \cos x = 2\cos^3 x - \cos x - 2\cos x + 2\cos^3 x = 4\cos^3 x - 3\cos x$.

sin(3x)=sin(2x+x)=sin(2x)cosx+cos(2x)sinx=(2sinxcosx)cosx+(12sin2x)sinx=2sinxcos2x+sinx2sin3x=2sinx(1sin2x)+sinx2sin3x=2sinx2sin3x+sinx2sin3x=3sinx4sin3x\sin(3x) = \sin(2x + x) = \sin(2x)\cos x + \cos(2x)\sin x = (2\sin x \cos x)\cos x + (1 - 2\sin^2 x)\sin x = 2\sin x \cos^2 x + \sin x - 2\sin^3 x = 2\sin x(1 - \sin^2 x) + \sin x - 2\sin^3 x = 2\sin x - 2\sin^3 x + \sin x - 2\sin^3 x = 3\sin x - 4\sin^3 x.
Thus cos(3x)=4cos3x3cosx\cos(3x) = 4\cos^3 x - 3\cos x and sin(3x)=3sinx4sin3x\sin(3x) = 3\sin x - 4\sin^3 x.

2. $\tan(3x) = \frac{\sin(3x)}{\cos(3x)} = \frac{3\sin x - 4\sin^3 x}{4\cos^3 x - 3\cos x} = \frac{\frac{3\sin x}{\cos^3 x} - \frac{4\sin^3 x}{\cos^3 x}}{\frac{4\cos^3 x}{\cos^3 x} - \frac{3\cos x}{\cos^3 x}} = \frac{3\frac{\sin x}{\cos x} - 4\frac{\sin^3 x}{\cos^3 x}}{4 - 3\frac{1}{\cos^2 x}}$.

However, the problem statement suggests a different approach.
tan(3x)=sin(3x)cos(3x)=3sinx4sin3x4cos3x3cosx=3sinxcosx4sin3xcos3x4cos3xcosx3cosxcosx=3tanx4tan3x/cos2x4cos2x3\tan(3x) = \frac{\sin(3x)}{\cos(3x)} = \frac{3\sin x - 4\sin^3 x}{4\cos^3 x - 3\cos x} = \frac{\frac{3\sin x}{\cos x} - 4\frac{\sin^3 x}{\cos^3 x}}{4\frac{\cos^3 x}{\cos x} - \frac{3\cos x}{\cos x}} = \frac{3\tan x - 4\tan^3 x/\cos^2 x}{4\cos^2x - 3}. This doesn't seem to go anywhere.
tan(3x)=tan(2x+x)=tan(2x)+tanx1tan(2x)tanx\tan(3x) = \tan(2x + x) = \frac{\tan(2x) + \tan x}{1 - \tan(2x)\tan x}.
tan(2x)=2tanx1tan2x\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}.
tan(3x)=2tanx1tan2x+tanx12tanx1tan2xtanx=2tanx+tanx(1tan2x)1tan2x×1tan2x1tan2x2tan2x=2tanx+tanxtan3x13tan2x=3tanxtan3x13tan2x=tanx3tan2x13tan2x\tan(3x) = \frac{\frac{2\tan x}{1 - \tan^2 x} + \tan x}{1 - \frac{2\tan x}{1 - \tan^2 x}\tan x} = \frac{2\tan x + \tan x(1 - \tan^2 x)}{1 - \tan^2 x} \times \frac{1 - \tan^2 x}{1 - \tan^2 x - 2\tan^2 x} = \frac{2\tan x + \tan x - \tan^3 x}{1 - 3\tan^2 x} = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} = \tan x \frac{3 - \tan^2 x}{1 - 3\tan^2 x}.
Exercise 13:

1. $(\sqrt{3} + \sqrt{2})^2 = (\sqrt{3})^2 + 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6}$.

2. $4x^2 + 2x(\sqrt{3} - \sqrt{2}) - \sqrt{6} = 0$.

x=2(32)±4(32)24(4)(6)8=(32)±(32)2+464x = \frac{-2(\sqrt{3} - \sqrt{2}) \pm \sqrt{4(\sqrt{3} - \sqrt{2})^2 - 4(4)(-\sqrt{6})}}{8} = \frac{-(\sqrt{3} - \sqrt{2}) \pm \sqrt{(\sqrt{3} - \sqrt{2})^2 + 4\sqrt{6}}}{4}.
(32)2=326+2=526(\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6}.
x=(32)±526+464=(32)±5+264=(32)±(3+2)4x = \frac{-(\sqrt{3} - \sqrt{2}) \pm \sqrt{5 - 2\sqrt{6} + 4\sqrt{6}}}{4} = \frac{-(\sqrt{3} - \sqrt{2}) \pm \sqrt{5 + 2\sqrt{6}}}{4} = \frac{-(\sqrt{3} - \sqrt{2}) \pm (\sqrt{3} + \sqrt{2})}{4}.
x1=3+2+3+24=224=22x_1 = \frac{-\sqrt{3} + \sqrt{2} + \sqrt{3} + \sqrt{2}}{4} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}.
x2=3+2324=234=32x_2 = \frac{-\sqrt{3} + \sqrt{2} - \sqrt{3} - \sqrt{2}}{4} = \frac{-2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2}.

3. $-4\sin^2 y + 2(\sqrt{3} + \sqrt{2}) \cos y - \sqrt{6} + 4 = 0$.

4(1cos2y)+2(3+2)cosy6+4=0-4(1 - \cos^2 y) + 2(\sqrt{3} + \sqrt{2}) \cos y - \sqrt{6} + 4 = 0.
4cos2y+2(3+2)cosy6=04\cos^2 y + 2(\sqrt{3} + \sqrt{2}) \cos y - \sqrt{6} = 0.
Let x=cosyx = \cos y.
4x2+2(3+2)x6=04x^2 + 2(\sqrt{3} + \sqrt{2})x - \sqrt{6} = 0. This looks similar to the previous equation, but the middle term has the wrong sign.
However 4x2+2(3+2)x6=04x^2 + 2(\sqrt{3}+\sqrt{2})x - \sqrt{6}=0 implies x=32±(32)4x=\frac{-\sqrt{3}-\sqrt{2} \pm (\sqrt{3}-\sqrt{2})}{4}.
x1=32+324=224=22x_1 = \frac{-\sqrt{3}-\sqrt{2}+\sqrt{3}-\sqrt{2}}{4} = -\frac{2\sqrt{2}}{4} = -\frac{\sqrt{2}}{2}.
x2=323+24=234=32x_2 = \frac{-\sqrt{3}-\sqrt{2}-\sqrt{3}+\sqrt{2}}{4} = -\frac{2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2}.
cosy=22\cos y = -\frac{\sqrt{2}}{2}, so y=3π4y = \frac{3\pi}{4} or y=5π4y = \frac{5\pi}{4}.
cosy=32\cos y = -\frac{\sqrt{3}}{2}, so y=5π6y = \frac{5\pi}{6} or y=7π6y = \frac{7\pi}{6}.

3. Final Answer

Exercise 11: (x,y)=(π2,π6)(x, y) = (\frac{\pi}{2}, \frac{\pi}{6}), (x,y)=(π2,5π6)(x, y) = (\frac{\pi}{2}, \frac{5\pi}{6}), (x,y)=(π6,π2)(x, y) = (\frac{\pi}{6}, \frac{\pi}{2}), (x,y)=(5π6,π2)(x, y) = (\frac{5\pi}{6}, \frac{\pi}{2}).
Exercise 12:

1. $\cos(3x) = 4\cos^3 x - 3\cos x$ and $\sin(3x) = 3\sin x - 4\sin^3 x$.

2. $\tan(3x) = \tan x \frac{3 - \tan^2 x}{1 - 3\tan^2 x}$.

Exercise 13:

1. $(\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$.

2. $x = \frac{\sqrt{2}}{2}$ and $x = -\frac{\sqrt{3}}{2}$.

3. $y = \frac{3\pi}{4}$, $y = \frac{5\pi}{4}$, $y = \frac{5\pi}{6}$, $y = \frac{7\pi}{6}$.

Related problems in "Algebra"

The problem asks us to evaluate the expression $(2^0) \cdot (\frac{2^{3 \cdot 3^3}}{2^3})$.

ExponentsSimplificationOrder of Operations
2025/4/16

The problem asks to evaluate the expression $(\frac{1}{2})^{3^2} \cdot (\frac{1}{2})^3$.

ExponentsSimplificationOrder of OperationsPowers of Two
2025/4/16

We are asked to find the value of $n$ in the equation $(9^n)^4 = 9^{12}$.

ExponentsEquationsSolving Equations
2025/4/16

We are asked to find the least common denominator (LCD) of the following rational expressions: $\fra...

Rational ExpressionsLeast Common DenominatorPolynomial FactorizationAlgebraic Manipulation
2025/4/16

The problem asks to find the value(s) of $x$ for which the expression $\frac{x-4}{5x-40} \div \frac{...

Rational ExpressionsUndefined ExpressionsDomain
2025/4/16

Simplify the expression: $\frac{(2x^3y^1z^{-2})^{-2}x^4y^8z^{-2}}{5x^5y^4z^2}$

ExponentsSimplificationAlgebraic Expressions
2025/4/16

The problem asks us to solve the linear equation $15 + x = 3x - 17$ for the variable $x$.

Linear EquationsSolving Equations
2025/4/16

The problem asks to graph the equation $y = x^2 - 4$.

ParabolaGraphingQuadratic EquationsVertexIntercepts
2025/4/15

The problem asks us to find the values of the variables $m$ and $y$ in the given expressions that wo...

Undefined ExpressionsRational ExpressionsSolving Equations
2025/4/15

We are given the equation $\frac{m^2}{4} = 9$ and need to solve for $m$.

EquationsSolving EquationsSquare Roots
2025/4/15