Exercise 11: Find all real numbers $x$ and $y$ in the interval $[0, 2\pi)$ such that $\begin{cases} \sin x + \sin y = \frac{3}{2} \\ \sin x \sin y = \frac{1}{2} \end{cases}$ Exercise 12: 1. Express $\cos(3x)$ in terms of $\cos x$ and $\sin(3x)$ in terms of $\sin x$.
2025/4/14
1. Problem Description
Exercise 11: Find all real numbers and in the interval such that
Exercise 12:
1. Express $\cos(3x)$ in terms of $\cos x$ and $\sin(3x)$ in terms of $\sin x$.
2. Prove that $\tan(3x) = \tan x \cdot \frac{3 - \tan^2 x}{1 - 3\tan^2 x}$.
Exercise 13:
1. Calculate $(\sqrt{3} + \sqrt{2})^2$.
2. Solve the equation $4x^2 + 2x(\sqrt{3} - \sqrt{2}) - \sqrt{6} = 0$ in $\mathbb{R}$.
3. Deduce the solutions in $[0, 2\pi)$ of the equation $-4\sin^2 y + 2(\sqrt{3} + \sqrt{2}) \cos y - \sqrt{6} + 4 = 0$ and place the images of the solutions of this equation on the trigonometric circle.
2. Solution Steps
Exercise 11:
Let and . We have
Then and are the roots of the quadratic equation
, which is .
Multiplying by 2, we get .
Then , so or .
Thus, and , or and .
If , then . If , then or .
If , then or . If , then .
Therefore, the solutions are , , , .
Exercise 12:
1. $\cos(3x) = \cos(2x + x) = \cos(2x) \cos x - \sin(2x) \sin x = (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x = 2\cos^3 x - \cos x - 2\sin^2 x \cos x = 2\cos^3 x - \cos x - 2(1 - \cos^2 x) \cos x = 2\cos^3 x - \cos x - 2\cos x + 2\cos^3 x = 4\cos^3 x - 3\cos x$.
.
Thus and .
2. $\tan(3x) = \frac{\sin(3x)}{\cos(3x)} = \frac{3\sin x - 4\sin^3 x}{4\cos^3 x - 3\cos x} = \frac{\frac{3\sin x}{\cos^3 x} - \frac{4\sin^3 x}{\cos^3 x}}{\frac{4\cos^3 x}{\cos^3 x} - \frac{3\cos x}{\cos^3 x}} = \frac{3\frac{\sin x}{\cos x} - 4\frac{\sin^3 x}{\cos^3 x}}{4 - 3\frac{1}{\cos^2 x}}$.
However, the problem statement suggests a different approach.
. This doesn't seem to go anywhere.
.
.
.
Exercise 13:
1. $(\sqrt{3} + \sqrt{2})^2 = (\sqrt{3})^2 + 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6}$.
2. $4x^2 + 2x(\sqrt{3} - \sqrt{2}) - \sqrt{6} = 0$.
.
.
.
.
.
3. $-4\sin^2 y + 2(\sqrt{3} + \sqrt{2}) \cos y - \sqrt{6} + 4 = 0$.
.
.
Let .
. This looks similar to the previous equation, but the middle term has the wrong sign.
However implies .
.
.
, so or .
, so or .
3. Final Answer
Exercise 11: , , , .
Exercise 12:
1. $\cos(3x) = 4\cos^3 x - 3\cos x$ and $\sin(3x) = 3\sin x - 4\sin^3 x$.
2. $\tan(3x) = \tan x \frac{3 - \tan^2 x}{1 - 3\tan^2 x}$.
Exercise 13: