Let's start with the first equation:
cos4x=81cos4x+21cos2x+83. We can rewrite the left-hand side as (cos2x)2. We know the double-angle formula: cos2x=2cos2x−1, which can be rearranged to cos2x=21+cos2x. Thus, cos4x=(cos2x)2=(21+cos2x)2=41+2cos2x+cos22x. Now we need to express cos22x using the double-angle formula again: cos22x=21+cos4x. Substitute this back into the equation:
cos4x=41+2cos2x+21+cos4x=82+4cos2x+1+cos4x=83+4cos2x+cos4x=81cos4x+21cos2x+83. This proves the first identity.
Now, let's work on the second equation:
sin4x=−81cos4x−21cos2x+83. We can rewrite the left-hand side as (sin2x)2. We know that sin2x=21−cos2x. Thus, sin4x=(sin2x)2=(21−cos2x)2=41−2cos2x+cos22x. Now we need to express cos22x using the double-angle formula again: cos22x=21+cos4x. Substitute this back into the equation:
sin4x=41−2cos2x+21+cos4x=82−4cos2x+1+cos4x=83−4cos2x+cos4x=81cos4x−21cos2x+83. This is equivalent to −81(−cos4x+4cos2x−3)/8=−81cos4x+4cos2x/8−83=−81cos4x+21cos2x−83. But according to the problem, it's sin4x=−81cos4x−21cos2x+83, so we got signs wrong. Recheck calculations. Alternative Solution:
We have already shown that cos4x=81cos4x+21cos2x+83. We know that sin2x+cos2x=1, so sin4x+2sin2xcos2x+cos4x=1. Thus, sin4x=1−2sin2xcos2x−cos4x. 2sin2xcos2x=2(21−cos2x)(21+cos2x)=21−cos22x=21−21+cos4x=42−1−cos4x=41−cos4x. sin4x=1−21−cos4x−(81cos4x+21cos2x+83)=1−21+21cos4x−81cos4x−21cos2x−83=88−4+4cos4x−cos4x−4cos2x−3=81+3cos4x−4cos2x=81+83cos4x−21cos2x $sin^2x + cos^2x =1
sin^4 + 2sin^2xcos^2x + cos^4 = 1 $
cos2x+sin2x=1 sin2x=1−cos2x $sin^4=1-2cos^2+cos^4 =1-2\frac{(1+cos(2x))}{2} + \frac{1}{8}cos4x + \frac{1}{2}cos2x + \frac{3}{8}
=1−1−cos(2x)+81cos4x+21cos2x+83==−cos(2x)+81cos4x+21cos2x+83=−21cos2x+81cos4x+83 Therefore, we have shown sin4=−21cos2x+81cos4x+83