The problem asks us to evaluate $9^{\frac{5}{2}}$.ArithmeticExponentsRootsSimplificationPowers2025/4/151. Problem DescriptionThe problem asks us to evaluate 9529^{\frac{5}{2}}925.2. Solution StepsWe can rewrite the expression as follows:952=(912)59^{\frac{5}{2}} = (9^{\frac{1}{2}})^5925=(921)5Since 912=9=39^{\frac{1}{2}} = \sqrt{9} = 3921=9=3, we have(912)5=35(9^{\frac{1}{2}})^5 = 3^5(921)5=35.Now we calculate 353^535:31=33^1 = 331=332=93^2 = 932=933=273^3 = 2733=2734=813^4 = 8134=8135=34×3=81×3=2433^5 = 3^4 \times 3 = 81 \times 3 = 24335=34×3=81×3=243.Therefore, 952=2439^{\frac{5}{2}} = 243925=243.3. Final Answer243