The problem asks us to evaluate $9^{\frac{5}{2}}$.

ArithmeticExponentsRootsSimplificationPowers
2025/4/15

1. Problem Description

The problem asks us to evaluate 9529^{\frac{5}{2}}.

2. Solution Steps

We can rewrite the expression as follows:
952=(912)59^{\frac{5}{2}} = (9^{\frac{1}{2}})^5
Since 912=9=39^{\frac{1}{2}} = \sqrt{9} = 3, we have
(912)5=35(9^{\frac{1}{2}})^5 = 3^5.
Now we calculate 353^5:
31=33^1 = 3
32=93^2 = 9
33=273^3 = 27
34=813^4 = 81
35=34×3=81×3=2433^5 = 3^4 \times 3 = 81 \times 3 = 243.
Therefore, 952=2439^{\frac{5}{2}} = 243.

3. Final Answer

243