The problem asks us to simplify $49^{\frac{3}{2}}$.

ArithmeticExponentsSimplificationRadicals
2025/4/15

1. Problem Description

The problem asks us to simplify 493249^{\frac{3}{2}}.

2. Solution Steps

We can rewrite 493249^{\frac{3}{2}} as (4912)3(49^{\frac{1}{2}})^3 or (493)12(49^3)^{\frac{1}{2}}. It's easier to first take the square root.
4932=(4912)349^{\frac{3}{2}} = (49^{\frac{1}{2}})^3
We know that 491249^{\frac{1}{2}} is the square root of
4
9.
4912=49=749^{\frac{1}{2}} = \sqrt{49} = 7
So,
4932=(7)349^{\frac{3}{2}} = (7)^3
Now we calculate 737^3:
73=777=497=3437^3 = 7 \cdot 7 \cdot 7 = 49 \cdot 7 = 343
Therefore, 4932=34349^{\frac{3}{2}} = 343.

3. Final Answer

343