The problem asks us to evaluate the expression $(\frac{8}{125})^{\frac{4}{3}}$.

ArithmeticExponentsFractional ExponentsSimplification
2025/4/17

1. Problem Description

The problem asks us to evaluate the expression (8125)43(\frac{8}{125})^{\frac{4}{3}}.

2. Solution Steps

First, we can rewrite the expression as:
(8125)43=((8125)13)4(\frac{8}{125})^{\frac{4}{3}} = ((\frac{8}{125})^{\frac{1}{3}})^4.
Then we can find the cube root of 8125\frac{8}{125}. Since 8=238=2^3 and 125=53125=5^3, we have
(8125)13=81312513=25(\frac{8}{125})^{\frac{1}{3}} = \frac{8^{\frac{1}{3}}}{125^{\frac{1}{3}}} = \frac{2}{5}.
Now, we can substitute this back into our original expression:
((8125)13)4=(25)4((\frac{8}{125})^{\frac{1}{3}})^4 = (\frac{2}{5})^4.
Therefore, we have (25)4=2454=16625(\frac{2}{5})^4 = \frac{2^4}{5^4} = \frac{16}{625}.

3. Final Answer

16625\frac{16}{625}