Given the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$, we need to: 1. Calculate the determinant of $A$ and determine if $A$ is invertible. If it is, find the inverse matrix $A^{-1}$.

AlgebraLinear AlgebraMatricesDeterminantsInverse MatrixSystem of Equations
2025/4/17

1. Problem Description

Given the matrix A=(101210123)A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}, we need to:

1. Calculate the determinant of $A$ and determine if $A$ is invertible. If it is, find the inverse matrix $A^{-1}$.

2. Solve the system of equations:

x+z=3x + z = -3
2x+y=12x + y = 1
x+2y+3z=2-x + 2y + 3z = 2
using the inverse matrix A1A^{-1}.

2. Solution Steps

1. Calculate the determinant of A:

det(A)=1(1302)0(230(1))+1(221(1))det(A) = 1(1*3 - 0*2) - 0(2*3 - 0*(-1)) + 1(2*2 - 1*(-1))
det(A)=1(3)0(6)+1(4+1)det(A) = 1(3) - 0(6) + 1(4 + 1)
det(A)=3+5=8det(A) = 3 + 5 = 8
Since det(A)=80det(A) = 8 \neq 0, the matrix AA is invertible.

2. Calculate the inverse matrix $A^{-1}$:

First, find the matrix of cofactors CC:
C11=(1302)=3C_{11} = (1*3 - 0*2) = 3
C12=(230(1))=6C_{12} = -(2*3 - 0*(-1)) = -6
C13=(221(1))=5C_{13} = (2*2 - 1*(-1)) = 5
C21=(0312)=2C_{21} = -(0*3 - 1*2) = 2
C22=(131(1))=4C_{22} = (1*3 - 1*(-1)) = 4
C23=(120(1))=2C_{23} = -(1*2 - 0*(-1)) = -2
C31=(0011)=1C_{31} = (0*0 - 1*1) = -1
C32=(1012)=2C_{32} = -(1*0 - 1*2) = 2
C33=(1102)=1C_{33} = (1*1 - 0*2) = 1
So the matrix of cofactors is:
C=(365242121)C = \begin{pmatrix} 3 & -6 & 5 \\ 2 & 4 & -2 \\ -1 & 2 & 1 \end{pmatrix}
Next, find the adjugate (transpose of the cofactor matrix):
adj(A)=CT=(321642521)adj(A) = C^T = \begin{pmatrix} 3 & 2 & -1 \\ -6 & 4 & 2 \\ 5 & -2 & 1 \end{pmatrix}
Then, A1=1det(A)adj(A)A^{-1} = \frac{1}{det(A)} * adj(A):
A1=18(321642521)=(3/82/81/86/84/82/85/82/81/8)A^{-1} = \frac{1}{8} \begin{pmatrix} 3 & 2 & -1 \\ -6 & 4 & 2 \\ 5 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 3/8 & 2/8 & -1/8 \\ -6/8 & 4/8 & 2/8 \\ 5/8 & -2/8 & 1/8 \end{pmatrix}
A1=(3/81/41/83/41/21/45/81/41/8)A^{-1} = \begin{pmatrix} 3/8 & 1/4 & -1/8 \\ -3/4 & 1/2 & 1/4 \\ 5/8 & -1/4 & 1/8 \end{pmatrix}

3. Solve the system of equations:

The system of equations can be written in matrix form as AX=BAX = B, where X=(xyz)X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} and B=(312)B = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}.
To solve for XX, we use the inverse matrix: X=A1BX = A^{-1}B.
X=(3/81/41/83/41/21/45/81/41/8)(312)X = \begin{pmatrix} 3/8 & 1/4 & -1/8 \\ -3/4 & 1/2 & 1/4 \\ 5/8 & -1/4 & 1/8 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}
x=(3/8)(3)+(1/4)(1)+(1/8)(2)=9/8+1/42/8=9/8+2/82/8=9/8x = (3/8)(-3) + (1/4)(1) + (-1/8)(2) = -9/8 + 1/4 - 2/8 = -9/8 + 2/8 - 2/8 = -9/8
y=(3/4)(3)+(1/2)(1)+(1/4)(2)=9/4+1/2+2/4=9/4+2/4+2/4=13/4y = (-3/4)(-3) + (1/2)(1) + (1/4)(2) = 9/4 + 1/2 + 2/4 = 9/4 + 2/4 + 2/4 = 13/4
z=(5/8)(3)+(1/4)(1)+(1/8)(2)=15/81/4+2/8=15/82/8+2/8=15/8z = (5/8)(-3) + (-1/4)(1) + (1/8)(2) = -15/8 - 1/4 + 2/8 = -15/8 - 2/8 + 2/8 = -15/8

3. Final Answer

The solution to the system of equations is:
x=9/8x = -9/8
y=13/4y = 13/4
z=15/8z = -15/8

Related problems in "Algebra"

Solve for $x$ in the equation $123 + (3x - 9)^2 = 323$.

Quadratic EquationsSolving EquationsSquare Roots
2025/4/18

The problem is to solve for $x$ in the equation $5|3-x|-51 = 4$.

Absolute Value EquationsSolving Equations
2025/4/18

The problem requires us to write a piecewise function that represents the monthly charge for electri...

Piecewise FunctionsLinear EquationsModeling
2025/4/18

The problem asks to find the piecewise function that represents the given graph. The graph consists ...

Piecewise FunctionsLinear EquationsCoordinate GeometrySlopePoint-Slope Form
2025/4/18

We are given a piecewise function: $f(x) = \begin{cases} x-1, & x < n \\ -x+4, & x \ge n \end{cases}...

Piecewise FunctionsRangeFunctionsInequalitiesFunction Analysis
2025/4/18

The problem asks us to find the x-intercept(s) and y-intercept(s) of the piecewise-defined function ...

FunctionsPiecewise FunctionsInterceptsGraphing
2025/4/18

We are given a piecewise-defined function in a graph. We need to express the function in function no...

Piecewise FunctionsLinear EquationsInterceptsFunction Notation
2025/4/18

The problem asks to describe the domain and range of the function represented by the given graph. Th...

FunctionsDomainRangeDiscrete FunctionsCoordinate Geometry
2025/4/18

The problem asks us to determine if the given function, represented by discrete points on a graph, i...

Linear FunctionsDomain and RangeDiscrete MathematicsFunctions
2025/4/18

The problem involves a polynomial $F(x, y, z) = x^3 + y^3 + z^3 - 3xyz$. (a) We need to show that $F...

PolynomialsFactorizationCyclic ExpressionsAlgebraic Manipulation
2025/4/18