The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical coordinates $(r, \theta, z)$ or spherical coordinates $(\rho, \theta, \phi)$. Specifically, we need to solve the following problems: 17. Convert $x^2 + y^2 = 9$ to cylindrical coordinates. 18. Convert $x^2 - y^2 = 25$ to cylindrical coordinates. 19. Convert $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates. 20. Convert $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates. 21. Convert $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.
GeometryCoordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19
1. Problem Description
The problem requires converting equations from rectangular coordinates to cylindrical coordinates or spherical coordinates .
Specifically, we need to solve the following problems:
1
7. Convert $x^2 + y^2 = 9$ to cylindrical coordinates.
1
8. Convert $x^2 - y^2 = 25$ to cylindrical coordinates.
1
9. Convert $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates.
2
0. Convert $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates.
2
1. Convert $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.
2. Solution Steps
Conversion Formulas:
Cylindrical Coordinates:
Spherical Coordinates:
Problem 17:
Since , we can directly substitute to get , which means (since ).
Problem 18:
Substituting and , we get .
This simplifies to , or .
Using the trigonometric identity , we have .
Problem 19:
Substituting , we get .
Problem 20:
We have .
Also, .
Thus, .
.
Problem 21:
We have .
Substituting and , we get .
Dividing by , we get , or .
Dividing by , we get , so , and .
3. Final Answer
1
7. $r = 3$
1
8. $r^2\cos(2\theta) = 25$
1
9. $r^2 + 4z^2 = 10$
2
0. $\rho^2(\sin^2\phi + 4\cos^2\phi) = 10$
2