The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical coordinates $(r, \theta, z)$ or spherical coordinates $(\rho, \theta, \phi)$. Specifically, we need to solve the following problems: 17. Convert $x^2 + y^2 = 9$ to cylindrical coordinates. 18. Convert $x^2 - y^2 = 25$ to cylindrical coordinates. 19. Convert $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates. 20. Convert $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates. 21. Convert $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

GeometryCoordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19

1. Problem Description

The problem requires converting equations from rectangular coordinates (x,y,z)(x, y, z) to cylindrical coordinates (r,θ,z)(r, \theta, z) or spherical coordinates (ρ,θ,ϕ)(\rho, \theta, \phi).
Specifically, we need to solve the following problems:
1

7. Convert $x^2 + y^2 = 9$ to cylindrical coordinates.

1

8. Convert $x^2 - y^2 = 25$ to cylindrical coordinates.

1

9. Convert $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates.

2

0. Convert $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates.

2

1. Convert $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

2. Solution Steps

Conversion Formulas:
Cylindrical Coordinates:
x=rcosθx = r\cos\theta
y=rsinθy = r\sin\theta
z=zz = z
x2+y2=r2x^2 + y^2 = r^2
Spherical Coordinates:
x=ρsinϕcosθx = \rho\sin\phi\cos\theta
y=ρsinϕsinθy = \rho\sin\phi\sin\theta
z=ρcosϕz = \rho\cos\phi
x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2
Problem 17: x2+y2=9x^2 + y^2 = 9
Since x2+y2=r2x^2 + y^2 = r^2, we can directly substitute to get r2=9r^2 = 9, which means r=3r = 3 (since r0r \ge 0).
Problem 18: x2y2=25x^2 - y^2 = 25
Substituting x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta, we get (rcosθ)2(rsinθ)2=25(r\cos\theta)^2 - (r\sin\theta)^2 = 25.
This simplifies to r2cos2θr2sin2θ=25r^2\cos^2\theta - r^2\sin^2\theta = 25, or r2(cos2θsin2θ)=25r^2(\cos^2\theta - \sin^2\theta) = 25.
Using the trigonometric identity cos(2θ)=cos2θsin2θ\cos(2\theta) = \cos^2\theta - \sin^2\theta, we have r2cos(2θ)=25r^2\cos(2\theta) = 25.
Problem 19: x2+y2+4z2=10x^2 + y^2 + 4z^2 = 10
Substituting x2+y2=r2x^2 + y^2 = r^2, we get r2+4z2=10r^2 + 4z^2 = 10.
Problem 20: x2+y2+4z2=10x^2 + y^2 + 4z^2 = 10
We have x2+y2=(ρsinϕcosθ)2+(ρsinϕsinθ)2=ρ2sin2ϕ(cos2θ+sin2θ)=ρ2sin2ϕx^2 + y^2 = (\rho\sin\phi\cos\theta)^2 + (\rho\sin\phi\sin\theta)^2 = \rho^2\sin^2\phi(\cos^2\theta + \sin^2\theta) = \rho^2\sin^2\phi.
Also, z2=(ρcosϕ)2=ρ2cos2ϕz^2 = (\rho\cos\phi)^2 = \rho^2\cos^2\phi.
Thus, x2+y2+4z2=ρ2sin2ϕ+4ρ2cos2ϕ=10x^2 + y^2 + 4z^2 = \rho^2\sin^2\phi + 4\rho^2\cos^2\phi = 10.
ρ2(sin2ϕ+4cos2ϕ)=10\rho^2(\sin^2\phi + 4\cos^2\phi) = 10.
Problem 21: 2x2+2y24z2=02x^2 + 2y^2 - 4z^2 = 0
We have 2(x2+y2)4z2=02(x^2 + y^2) - 4z^2 = 0.
Substituting x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi and z2=ρ2cos2ϕz^2 = \rho^2\cos^2\phi, we get 2ρ2sin2ϕ4ρ2cos2ϕ=02\rho^2\sin^2\phi - 4\rho^2\cos^2\phi = 0.
Dividing by 2ρ22\rho^2, we get sin2ϕ2cos2ϕ=0\sin^2\phi - 2\cos^2\phi = 0, or sin2ϕ=2cos2ϕ\sin^2\phi = 2\cos^2\phi.
Dividing by cos2ϕ\cos^2\phi, we get tan2ϕ=2\tan^2\phi = 2, so tanϕ=2\tan\phi = \sqrt{2}, and ϕ=arctan(2)\phi = \arctan(\sqrt{2}).

3. Final Answer

1

7. $r = 3$

1

8. $r^2\cos(2\theta) = 25$

1

9. $r^2 + 4z^2 = 10$

2

0. $\rho^2(\sin^2\phi + 4\cos^2\phi) = 10$

2

1. $\tan^2\phi = 2$ or $\phi = \arctan(\sqrt{2})$

Related problems in "Geometry"

A rectangle $PQRS$ has dimensions $20$ cm by $(10+10)$ cm $= 20$ cm. A square of side $x$ cm is cut ...

AreaRectangleSquareAlgebraic Equations
2025/4/19

The diagram shows a rectangle $PQRS$ with length $10+10=20$ cm and width $20$ cm. A square of side $...

AreaRectangleSquareAlgebraic Equations
2025/4/19

We are given the coordinates of the vertices of a quadrilateral UVWX: $U(6,-2)$, $V(1,3)$, $W(-7,6)$...

Coordinate GeometryQuadrilateralsSlopeDistance FormulaParallelogram
2025/4/19

The problem asks us to find the coordinates of point $D$ such that points $A(-2, 3)$, $B(2, 8)$, $C(...

ParallelogramCoordinate GeometryMidpoint Formula
2025/4/19

The problem requires converting equations from one coordinate system to another. We will solve probl...

Coordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

We have a circle $PQRS$ with center $O$. We are given that $\angle UQR = 68^\circ$, $\angle TPS = 7...

CirclesCyclic QuadrilateralsAnglesGeometric Proofs
2025/4/19

We are asked to describe the graphs of the given cylindrical or spherical equations. Problem 7: $r =...

3D GeometryCylindrical CoordinatesSpherical CoordinatesCoordinate SystemsGraphing
2025/4/19

The problem requires converting Cartesian coordinates to cylindrical coordinates. (a) Convert $(2, 2...

Coordinate SystemsCartesian CoordinatesCylindrical CoordinatesCoordinate Transformation3D Geometry
2025/4/19

We are given a circle $PQRS$ with center $O$. We are also given that $\angle UQR = 68^\circ$, $\angl...

Circle GeometryCyclic QuadrilateralAnglesExterior Angle Theorem
2025/4/19

The problem asks to convert the given spherical coordinates to Cartesian coordinates. (a) The spheri...

Coordinate GeometrySpherical CoordinatesCartesian Coordinates3D GeometryCoordinate Transformation
2025/4/19