The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical coordinates $(r, \theta, z)$ or spherical coordinates $(\rho, \theta, \phi)$. Specifically, we need to solve the following problems: 17. Convert $x^2 + y^2 = 9$ to cylindrical coordinates. 18. Convert $x^2 - y^2 = 25$ to cylindrical coordinates. 19. Convert $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates. 20. Convert $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates. 21. Convert $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

GeometryCoordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19

1. Problem Description

The problem requires converting equations from rectangular coordinates (x,y,z)(x, y, z) to cylindrical coordinates (r,θ,z)(r, \theta, z) or spherical coordinates (ρ,θ,ϕ)(\rho, \theta, \phi).
Specifically, we need to solve the following problems:
1

7. Convert $x^2 + y^2 = 9$ to cylindrical coordinates.

1

8. Convert $x^2 - y^2 = 25$ to cylindrical coordinates.

1

9. Convert $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates.

2

0. Convert $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates.

2

1. Convert $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

2. Solution Steps

Conversion Formulas:
Cylindrical Coordinates:
x=rcosθx = r\cos\theta
y=rsinθy = r\sin\theta
z=zz = z
x2+y2=r2x^2 + y^2 = r^2
Spherical Coordinates:
x=ρsinϕcosθx = \rho\sin\phi\cos\theta
y=ρsinϕsinθy = \rho\sin\phi\sin\theta
z=ρcosϕz = \rho\cos\phi
x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2
Problem 17: x2+y2=9x^2 + y^2 = 9
Since x2+y2=r2x^2 + y^2 = r^2, we can directly substitute to get r2=9r^2 = 9, which means r=3r = 3 (since r0r \ge 0).
Problem 18: x2y2=25x^2 - y^2 = 25
Substituting x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta, we get (rcosθ)2(rsinθ)2=25(r\cos\theta)^2 - (r\sin\theta)^2 = 25.
This simplifies to r2cos2θr2sin2θ=25r^2\cos^2\theta - r^2\sin^2\theta = 25, or r2(cos2θsin2θ)=25r^2(\cos^2\theta - \sin^2\theta) = 25.
Using the trigonometric identity cos(2θ)=cos2θsin2θ\cos(2\theta) = \cos^2\theta - \sin^2\theta, we have r2cos(2θ)=25r^2\cos(2\theta) = 25.
Problem 19: x2+y2+4z2=10x^2 + y^2 + 4z^2 = 10
Substituting x2+y2=r2x^2 + y^2 = r^2, we get r2+4z2=10r^2 + 4z^2 = 10.
Problem 20: x2+y2+4z2=10x^2 + y^2 + 4z^2 = 10
We have x2+y2=(ρsinϕcosθ)2+(ρsinϕsinθ)2=ρ2sin2ϕ(cos2θ+sin2θ)=ρ2sin2ϕx^2 + y^2 = (\rho\sin\phi\cos\theta)^2 + (\rho\sin\phi\sin\theta)^2 = \rho^2\sin^2\phi(\cos^2\theta + \sin^2\theta) = \rho^2\sin^2\phi.
Also, z2=(ρcosϕ)2=ρ2cos2ϕz^2 = (\rho\cos\phi)^2 = \rho^2\cos^2\phi.
Thus, x2+y2+4z2=ρ2sin2ϕ+4ρ2cos2ϕ=10x^2 + y^2 + 4z^2 = \rho^2\sin^2\phi + 4\rho^2\cos^2\phi = 10.
ρ2(sin2ϕ+4cos2ϕ)=10\rho^2(\sin^2\phi + 4\cos^2\phi) = 10.
Problem 21: 2x2+2y24z2=02x^2 + 2y^2 - 4z^2 = 0
We have 2(x2+y2)4z2=02(x^2 + y^2) - 4z^2 = 0.
Substituting x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi and z2=ρ2cos2ϕz^2 = \rho^2\cos^2\phi, we get 2ρ2sin2ϕ4ρ2cos2ϕ=02\rho^2\sin^2\phi - 4\rho^2\cos^2\phi = 0.
Dividing by 2ρ22\rho^2, we get sin2ϕ2cos2ϕ=0\sin^2\phi - 2\cos^2\phi = 0, or sin2ϕ=2cos2ϕ\sin^2\phi = 2\cos^2\phi.
Dividing by cos2ϕ\cos^2\phi, we get tan2ϕ=2\tan^2\phi = 2, so tanϕ=2\tan\phi = \sqrt{2}, and ϕ=arctan(2)\phi = \arctan(\sqrt{2}).

3. Final Answer

1

7. $r = 3$

1

8. $r^2\cos(2\theta) = 25$

1

9. $r^2 + 4z^2 = 10$

2

0. $\rho^2(\sin^2\phi + 4\cos^2\phi) = 10$

2

1. $\tan^2\phi = 2$ or $\phi = \arctan(\sqrt{2})$

Related problems in "Geometry"

The problem asks which of the given lines is perpendicular to the line $x + 2y - 1 = 0$. The options...

Linear EquationsPerpendicular LinesSlopeCoordinate Geometry
2025/6/16

The problem asks to put the steps for constructing a right-angled triangle with a base of 10 cm and ...

Triangle ConstructionRight-Angled TriangleGeometric Construction
2025/6/16

The problem is to arrange the steps to construct a right-angled triangle with a base of 10 cm and a ...

Geometric ConstructionRight TriangleCompass and Straightedge
2025/6/16

The problem asks to arrange the steps for constructing triangle $XYZ$ given that $XY = 10$ cm, $XZ =...

Triangle ConstructionEuclidean GeometryGeometric Construction
2025/6/16

Given three vectors $\vec{a} = 6\hat{i} + 3\hat{j} - 9\hat{k}$, $\vec{b} = 12\hat{i} - 8\hat{j} - 4\...

VectorsDot ProductCross ProductScalar Triple ProductVector Triple Product3D Geometry
2025/6/15

The problem asks to prove the Angle Sum Theorem for a triangle, which states that the sum of the int...

Angle Sum TheoremTrianglesGeometric ProofParallel LinesAlternate Interior Angles
2025/6/15

We are given a triangle $ABC$ with an angle $A = 55^\circ$. We are also given that $DE$ is parallel ...

TrianglesParallel LinesAnglesGeometric Proof
2025/6/15

The problem describes a geometric construction. It asks us to: i. Construct triangle ABC with $AB = ...

Geometric ConstructionTrianglesTrapeziumsCirclesArea CalculationAnglesParallel LinesPerpendicular Bisector
2025/6/15

The problem asks to perform a series of geometric constructions and calculations based on the given ...

Geometric ConstructionTrianglesTrapeziumsCirclesAnglesArea CalculationLaw of Cosines
2025/6/15

Given that vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ are coplanar, we need to show that the determ...

VectorsDeterminantsLinear AlgebraCoplanar VectorsDot Product
2025/6/15