The problem requires converting equations from one coordinate system to another. We will solve problems 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27.

GeometryCoordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

1. Problem Description

The problem requires converting equations from one coordinate system to another. We will solve problems 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and
2
7.

2. Solution Steps

1

7. $x^2 + y^2 = 9$ to cylindrical coordinates.

In cylindrical coordinates, x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta, and z=zz = z. Therefore, x2+y2=r2x^2 + y^2 = r^2. Substituting this into the given equation, we have r2=9r^2 = 9.
1

8. $x^2 - y^2 = 25$ to cylindrical coordinates.

In cylindrical coordinates, x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta. Therefore, x2y2=r2cos2θr2sin2θ=r2(cos2θsin2θ)=r2cos(2θ)x^2 - y^2 = r^2\cos^2\theta - r^2\sin^2\theta = r^2(\cos^2\theta - \sin^2\theta) = r^2\cos(2\theta).
So, r2cos(2θ)=25r^2\cos(2\theta) = 25.
1

9. $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates.

Since x2+y2=r2x^2 + y^2 = r^2, the equation becomes r2+4z2=10r^2 + 4z^2 = 10.
2

0. $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates.

In spherical coordinates, x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, and z=ρcosϕz = \rho\cos\phi. Also, x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2.
Then x2+y2=ρ2sin2ϕcos2θ+ρ2sin2ϕsin2θ=ρ2sin2ϕ(cos2θ+sin2θ)=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi\cos^2\theta + \rho^2\sin^2\phi\sin^2\theta = \rho^2\sin^2\phi(\cos^2\theta + \sin^2\theta) = \rho^2\sin^2\phi.
Substituting these into the given equation, we have ρ2sin2ϕ+4ρ2cos2ϕ=10\rho^2\sin^2\phi + 4\rho^2\cos^2\phi = 10, or ρ2(sin2ϕ+4cos2ϕ)=10\rho^2(\sin^2\phi + 4\cos^2\phi) = 10.
Also, ρ2(sin2ϕ+cos2ϕ+3cos2ϕ)=ρ2(1+3cos2ϕ)=10\rho^2(\sin^2\phi + \cos^2\phi + 3\cos^2\phi) = \rho^2(1 + 3\cos^2\phi) = 10.
2

1. $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

2(x2+y2)4z2=02(x^2 + y^2) - 4z^2 = 0, so x2+y2=2z2x^2 + y^2 = 2z^2.
Substituting x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi and z=ρcosϕz = \rho\cos\phi, we get ρ2sin2ϕ=2ρ2cos2ϕ\rho^2\sin^2\phi = 2\rho^2\cos^2\phi.
Thus, sin2ϕ=2cos2ϕ\sin^2\phi = 2\cos^2\phi, or tan2ϕ=2\tan^2\phi = 2. Therefore, tanϕ=±2\tan\phi = \pm\sqrt{2}.
2

2. $x^2 - y^2 - z^2 = 1$ to spherical coordinates.

x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, and z=ρcosϕz = \rho\cos\phi.
So, ρ2sin2ϕcos2θρ2sin2ϕsin2θρ2cos2ϕ=1\rho^2\sin^2\phi\cos^2\theta - \rho^2\sin^2\phi\sin^2\theta - \rho^2\cos^2\phi = 1.
ρ2(sin2ϕcos2θsin2ϕsin2θcos2ϕ)=1\rho^2(\sin^2\phi\cos^2\theta - \sin^2\phi\sin^2\theta - \cos^2\phi) = 1.
ρ2(sin2ϕ(cos2θsin2θ)cos2ϕ)=1\rho^2(\sin^2\phi(\cos^2\theta - \sin^2\theta) - \cos^2\phi) = 1.
ρ2(sin2ϕcos(2θ)cos2ϕ)=1\rho^2(\sin^2\phi\cos(2\theta) - \cos^2\phi) = 1.
2

3. $r^2 + 2z^2 = 4$ to spherical coordinates.

r2=x2+y2=ρ2sin2ϕr^2 = x^2 + y^2 = \rho^2\sin^2\phi, z=ρcosϕz = \rho\cos\phi.
ρ2sin2ϕ+2ρ2cos2ϕ=4\rho^2\sin^2\phi + 2\rho^2\cos^2\phi = 4.
ρ2(sin2ϕ+2cos2ϕ)=4\rho^2(\sin^2\phi + 2\cos^2\phi) = 4.
ρ2(sin2ϕ+cos2ϕ+cos2ϕ)=ρ2(1+cos2ϕ)=4\rho^2(\sin^2\phi + \cos^2\phi + \cos^2\phi) = \rho^2(1 + \cos^2\phi) = 4.
2

4. $\rho = 2\cos\phi$ to cylindrical coordinates.

Multiply both sides by ρ\rho: ρ2=2ρcosϕ\rho^2 = 2\rho\cos\phi.
ρ2=x2+y2+z2\rho^2 = x^2 + y^2 + z^2, and z=ρcosϕz = \rho\cos\phi.
So, x2+y2+z2=2zx^2 + y^2 + z^2 = 2z.
Then r2+z2=2zr^2 + z^2 = 2z, or r2=2zz2r^2 = 2z - z^2.
2

5. $x + y = 4$ to cylindrical coordinates.

x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta.
rcosθ+rsinθ=4r\cos\theta + r\sin\theta = 4.
r(cosθ+sinθ)=4r(\cos\theta + \sin\theta) = 4.
2

6. $x + y + z = 1$ to spherical coordinates.

x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, z=ρcosϕz = \rho\cos\phi.
ρsinϕcosθ+ρsinϕsinθ+ρcosϕ=1\rho\sin\phi\cos\theta + \rho\sin\phi\sin\theta + \rho\cos\phi = 1.
ρ(sinϕcosθ+sinϕsinθ+cosϕ)=1\rho(\sin\phi\cos\theta + \sin\phi\sin\theta + \cos\phi) = 1.
ρ(sinϕ(cosθ+sinθ)+cosϕ)=1\rho(\sin\phi(\cos\theta + \sin\theta) + \cos\phi) = 1.
2

7. $x^2 + y^2 = 9$ to spherical coordinates.

x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi.
ρ2sin2ϕ=9\rho^2\sin^2\phi = 9.

3. Final Answer

1

7. $r^2 = 9$

1

8. $r^2\cos(2\theta) = 25$

1

9. $r^2 + 4z^2 = 10$

2

0. $\rho^2(1 + 3\cos^2\phi) = 10$

2

1. $\tan\phi = \pm\sqrt{2}$

2

2. $\rho^2(\sin^2\phi\cos(2\theta) - \cos^2\phi) = 1$

2

3. $\rho^2(1 + \cos^2\phi) = 4$

2

4. $r^2 + z^2 = 2z$

2

5. $r(\cos\theta + \sin\theta) = 4$

2

6. $\rho(\sin\phi(\cos\theta + \sin\theta) + \cos\phi) = 1$

2

7. $\rho^2\sin^2\phi = 9$

Related problems in "Geometry"

A rectangle $PQRS$ has dimensions $20$ cm by $(10+10)$ cm $= 20$ cm. A square of side $x$ cm is cut ...

AreaRectangleSquareAlgebraic Equations
2025/4/19

The diagram shows a rectangle $PQRS$ with length $10+10=20$ cm and width $20$ cm. A square of side $...

AreaRectangleSquareAlgebraic Equations
2025/4/19

We are given the coordinates of the vertices of a quadrilateral UVWX: $U(6,-2)$, $V(1,3)$, $W(-7,6)$...

Coordinate GeometryQuadrilateralsSlopeDistance FormulaParallelogram
2025/4/19

The problem asks us to find the coordinates of point $D$ such that points $A(-2, 3)$, $B(2, 8)$, $C(...

ParallelogramCoordinate GeometryMidpoint Formula
2025/4/19

We have a circle $PQRS$ with center $O$. We are given that $\angle UQR = 68^\circ$, $\angle TPS = 7...

CirclesCyclic QuadrilateralsAnglesGeometric Proofs
2025/4/19

The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical co...

Coordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19

We are asked to describe the graphs of the given cylindrical or spherical equations. Problem 7: $r =...

3D GeometryCylindrical CoordinatesSpherical CoordinatesCoordinate SystemsGraphing
2025/4/19

The problem requires converting Cartesian coordinates to cylindrical coordinates. (a) Convert $(2, 2...

Coordinate SystemsCartesian CoordinatesCylindrical CoordinatesCoordinate Transformation3D Geometry
2025/4/19

We are given a circle $PQRS$ with center $O$. We are also given that $\angle UQR = 68^\circ$, $\angl...

Circle GeometryCyclic QuadrilateralAnglesExterior Angle Theorem
2025/4/19

The problem asks to convert the given spherical coordinates to Cartesian coordinates. (a) The spheri...

Coordinate GeometrySpherical CoordinatesCartesian Coordinates3D GeometryCoordinate Transformation
2025/4/19