The problem requires converting equations from one coordinate system to another. We will solve problems 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27.

GeometryCoordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

1. Problem Description

The problem requires converting equations from one coordinate system to another. We will solve problems 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and
2
7.

2. Solution Steps

1

7. $x^2 + y^2 = 9$ to cylindrical coordinates.

In cylindrical coordinates, x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta, and z=zz = z. Therefore, x2+y2=r2x^2 + y^2 = r^2. Substituting this into the given equation, we have r2=9r^2 = 9.
1

8. $x^2 - y^2 = 25$ to cylindrical coordinates.

In cylindrical coordinates, x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta. Therefore, x2y2=r2cos2θr2sin2θ=r2(cos2θsin2θ)=r2cos(2θ)x^2 - y^2 = r^2\cos^2\theta - r^2\sin^2\theta = r^2(\cos^2\theta - \sin^2\theta) = r^2\cos(2\theta).
So, r2cos(2θ)=25r^2\cos(2\theta) = 25.
1

9. $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates.

Since x2+y2=r2x^2 + y^2 = r^2, the equation becomes r2+4z2=10r^2 + 4z^2 = 10.
2

0. $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates.

In spherical coordinates, x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, and z=ρcosϕz = \rho\cos\phi. Also, x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2.
Then x2+y2=ρ2sin2ϕcos2θ+ρ2sin2ϕsin2θ=ρ2sin2ϕ(cos2θ+sin2θ)=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi\cos^2\theta + \rho^2\sin^2\phi\sin^2\theta = \rho^2\sin^2\phi(\cos^2\theta + \sin^2\theta) = \rho^2\sin^2\phi.
Substituting these into the given equation, we have ρ2sin2ϕ+4ρ2cos2ϕ=10\rho^2\sin^2\phi + 4\rho^2\cos^2\phi = 10, or ρ2(sin2ϕ+4cos2ϕ)=10\rho^2(\sin^2\phi + 4\cos^2\phi) = 10.
Also, ρ2(sin2ϕ+cos2ϕ+3cos2ϕ)=ρ2(1+3cos2ϕ)=10\rho^2(\sin^2\phi + \cos^2\phi + 3\cos^2\phi) = \rho^2(1 + 3\cos^2\phi) = 10.
2

1. $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

2(x2+y2)4z2=02(x^2 + y^2) - 4z^2 = 0, so x2+y2=2z2x^2 + y^2 = 2z^2.
Substituting x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi and z=ρcosϕz = \rho\cos\phi, we get ρ2sin2ϕ=2ρ2cos2ϕ\rho^2\sin^2\phi = 2\rho^2\cos^2\phi.
Thus, sin2ϕ=2cos2ϕ\sin^2\phi = 2\cos^2\phi, or tan2ϕ=2\tan^2\phi = 2. Therefore, tanϕ=±2\tan\phi = \pm\sqrt{2}.
2

2. $x^2 - y^2 - z^2 = 1$ to spherical coordinates.

x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, and z=ρcosϕz = \rho\cos\phi.
So, ρ2sin2ϕcos2θρ2sin2ϕsin2θρ2cos2ϕ=1\rho^2\sin^2\phi\cos^2\theta - \rho^2\sin^2\phi\sin^2\theta - \rho^2\cos^2\phi = 1.
ρ2(sin2ϕcos2θsin2ϕsin2θcos2ϕ)=1\rho^2(\sin^2\phi\cos^2\theta - \sin^2\phi\sin^2\theta - \cos^2\phi) = 1.
ρ2(sin2ϕ(cos2θsin2θ)cos2ϕ)=1\rho^2(\sin^2\phi(\cos^2\theta - \sin^2\theta) - \cos^2\phi) = 1.
ρ2(sin2ϕcos(2θ)cos2ϕ)=1\rho^2(\sin^2\phi\cos(2\theta) - \cos^2\phi) = 1.
2

3. $r^2 + 2z^2 = 4$ to spherical coordinates.

r2=x2+y2=ρ2sin2ϕr^2 = x^2 + y^2 = \rho^2\sin^2\phi, z=ρcosϕz = \rho\cos\phi.
ρ2sin2ϕ+2ρ2cos2ϕ=4\rho^2\sin^2\phi + 2\rho^2\cos^2\phi = 4.
ρ2(sin2ϕ+2cos2ϕ)=4\rho^2(\sin^2\phi + 2\cos^2\phi) = 4.
ρ2(sin2ϕ+cos2ϕ+cos2ϕ)=ρ2(1+cos2ϕ)=4\rho^2(\sin^2\phi + \cos^2\phi + \cos^2\phi) = \rho^2(1 + \cos^2\phi) = 4.
2

4. $\rho = 2\cos\phi$ to cylindrical coordinates.

Multiply both sides by ρ\rho: ρ2=2ρcosϕ\rho^2 = 2\rho\cos\phi.
ρ2=x2+y2+z2\rho^2 = x^2 + y^2 + z^2, and z=ρcosϕz = \rho\cos\phi.
So, x2+y2+z2=2zx^2 + y^2 + z^2 = 2z.
Then r2+z2=2zr^2 + z^2 = 2z, or r2=2zz2r^2 = 2z - z^2.
2

5. $x + y = 4$ to cylindrical coordinates.

x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta.
rcosθ+rsinθ=4r\cos\theta + r\sin\theta = 4.
r(cosθ+sinθ)=4r(\cos\theta + \sin\theta) = 4.
2

6. $x + y + z = 1$ to spherical coordinates.

x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, z=ρcosϕz = \rho\cos\phi.
ρsinϕcosθ+ρsinϕsinθ+ρcosϕ=1\rho\sin\phi\cos\theta + \rho\sin\phi\sin\theta + \rho\cos\phi = 1.
ρ(sinϕcosθ+sinϕsinθ+cosϕ)=1\rho(\sin\phi\cos\theta + \sin\phi\sin\theta + \cos\phi) = 1.
ρ(sinϕ(cosθ+sinθ)+cosϕ)=1\rho(\sin\phi(\cos\theta + \sin\theta) + \cos\phi) = 1.
2

7. $x^2 + y^2 = 9$ to spherical coordinates.

x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi.
ρ2sin2ϕ=9\rho^2\sin^2\phi = 9.

3. Final Answer

1

7. $r^2 = 9$

1

8. $r^2\cos(2\theta) = 25$

1

9. $r^2 + 4z^2 = 10$

2

0. $\rho^2(1 + 3\cos^2\phi) = 10$

2

1. $\tan\phi = \pm\sqrt{2}$

2

2. $\rho^2(\sin^2\phi\cos(2\theta) - \cos^2\phi) = 1$

2

3. $\rho^2(1 + \cos^2\phi) = 4$

2

4. $r^2 + z^2 = 2z$

2

5. $r(\cos\theta + \sin\theta) = 4$

2

6. $\rho(\sin\phi(\cos\theta + \sin\theta) + \cos\phi) = 1$

2

7. $\rho^2\sin^2\phi = 9$

Related problems in "Geometry"

We are given two sides of a triangle, with lengths 57 and 55. We need to find the range of possible ...

Triangle InequalityTrianglesSide Lengths
2025/7/4

The problem asks to find the value of $n$ in triangle $PQR$, where the measures of the angles are gi...

TriangleAngle SumTriangle InequalityAngle-Side Relationship
2025/7/4

The problem asks to express the vectors $\overline{MK}$, $\overline{NL}$, $\overline{NK}$, and $\ove...

VectorsVector AdditionGeometric Vectors
2025/7/3

We are given two diagrams containing vectors. We need to find which options are equal to the resulta...

VectorsVector AdditionVector Decomposition
2025/7/3

The problem asks us to identify the vertex and axis of symmetry of a given parabola from its graph, ...

ParabolaVertexAxis of SymmetryGraphing
2025/7/3

The problem asks us to find the slope of the line shown in the graph.

Linear EquationsSlopeCoordinate Geometry
2025/7/3

The problem asks whether the endpoints of the given graph are included or not. A closed circle indic...

Graph AnalysisInterval NotationEndpoints
2025/7/3

The problem asks to find the slope of a line given two points on the line: $(-10, -9)$ and $(-6, -5)...

SlopeCoordinate GeometryLinear Equations
2025/7/3

We are given the area of a square as 81 square meters, and we are asked to find the side length of t...

AreaSquareSide LengthGeometry
2025/7/2

We are asked to find the area of a square, given that its side length is $0.7$ meters. We are asked ...

AreaSquareUnit Conversion
2025/7/2