The problem requires converting equations from one coordinate system to another. We will solve problems 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27.

GeometryCoordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

1. Problem Description

The problem requires converting equations from one coordinate system to another. We will solve problems 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and
2
7.

2. Solution Steps

1

7. $x^2 + y^2 = 9$ to cylindrical coordinates.

In cylindrical coordinates, x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta, and z=zz = z. Therefore, x2+y2=r2x^2 + y^2 = r^2. Substituting this into the given equation, we have r2=9r^2 = 9.
1

8. $x^2 - y^2 = 25$ to cylindrical coordinates.

In cylindrical coordinates, x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta. Therefore, x2y2=r2cos2θr2sin2θ=r2(cos2θsin2θ)=r2cos(2θ)x^2 - y^2 = r^2\cos^2\theta - r^2\sin^2\theta = r^2(\cos^2\theta - \sin^2\theta) = r^2\cos(2\theta).
So, r2cos(2θ)=25r^2\cos(2\theta) = 25.
1

9. $x^2 + y^2 + 4z^2 = 10$ to cylindrical coordinates.

Since x2+y2=r2x^2 + y^2 = r^2, the equation becomes r2+4z2=10r^2 + 4z^2 = 10.
2

0. $x^2 + y^2 + 4z^2 = 10$ to spherical coordinates.

In spherical coordinates, x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, and z=ρcosϕz = \rho\cos\phi. Also, x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2.
Then x2+y2=ρ2sin2ϕcos2θ+ρ2sin2ϕsin2θ=ρ2sin2ϕ(cos2θ+sin2θ)=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi\cos^2\theta + \rho^2\sin^2\phi\sin^2\theta = \rho^2\sin^2\phi(\cos^2\theta + \sin^2\theta) = \rho^2\sin^2\phi.
Substituting these into the given equation, we have ρ2sin2ϕ+4ρ2cos2ϕ=10\rho^2\sin^2\phi + 4\rho^2\cos^2\phi = 10, or ρ2(sin2ϕ+4cos2ϕ)=10\rho^2(\sin^2\phi + 4\cos^2\phi) = 10.
Also, ρ2(sin2ϕ+cos2ϕ+3cos2ϕ)=ρ2(1+3cos2ϕ)=10\rho^2(\sin^2\phi + \cos^2\phi + 3\cos^2\phi) = \rho^2(1 + 3\cos^2\phi) = 10.
2

1. $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

2(x2+y2)4z2=02(x^2 + y^2) - 4z^2 = 0, so x2+y2=2z2x^2 + y^2 = 2z^2.
Substituting x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi and z=ρcosϕz = \rho\cos\phi, we get ρ2sin2ϕ=2ρ2cos2ϕ\rho^2\sin^2\phi = 2\rho^2\cos^2\phi.
Thus, sin2ϕ=2cos2ϕ\sin^2\phi = 2\cos^2\phi, or tan2ϕ=2\tan^2\phi = 2. Therefore, tanϕ=±2\tan\phi = \pm\sqrt{2}.
2

2. $x^2 - y^2 - z^2 = 1$ to spherical coordinates.

x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, and z=ρcosϕz = \rho\cos\phi.
So, ρ2sin2ϕcos2θρ2sin2ϕsin2θρ2cos2ϕ=1\rho^2\sin^2\phi\cos^2\theta - \rho^2\sin^2\phi\sin^2\theta - \rho^2\cos^2\phi = 1.
ρ2(sin2ϕcos2θsin2ϕsin2θcos2ϕ)=1\rho^2(\sin^2\phi\cos^2\theta - \sin^2\phi\sin^2\theta - \cos^2\phi) = 1.
ρ2(sin2ϕ(cos2θsin2θ)cos2ϕ)=1\rho^2(\sin^2\phi(\cos^2\theta - \sin^2\theta) - \cos^2\phi) = 1.
ρ2(sin2ϕcos(2θ)cos2ϕ)=1\rho^2(\sin^2\phi\cos(2\theta) - \cos^2\phi) = 1.
2

3. $r^2 + 2z^2 = 4$ to spherical coordinates.

r2=x2+y2=ρ2sin2ϕr^2 = x^2 + y^2 = \rho^2\sin^2\phi, z=ρcosϕz = \rho\cos\phi.
ρ2sin2ϕ+2ρ2cos2ϕ=4\rho^2\sin^2\phi + 2\rho^2\cos^2\phi = 4.
ρ2(sin2ϕ+2cos2ϕ)=4\rho^2(\sin^2\phi + 2\cos^2\phi) = 4.
ρ2(sin2ϕ+cos2ϕ+cos2ϕ)=ρ2(1+cos2ϕ)=4\rho^2(\sin^2\phi + \cos^2\phi + \cos^2\phi) = \rho^2(1 + \cos^2\phi) = 4.
2

4. $\rho = 2\cos\phi$ to cylindrical coordinates.

Multiply both sides by ρ\rho: ρ2=2ρcosϕ\rho^2 = 2\rho\cos\phi.
ρ2=x2+y2+z2\rho^2 = x^2 + y^2 + z^2, and z=ρcosϕz = \rho\cos\phi.
So, x2+y2+z2=2zx^2 + y^2 + z^2 = 2z.
Then r2+z2=2zr^2 + z^2 = 2z, or r2=2zz2r^2 = 2z - z^2.
2

5. $x + y = 4$ to cylindrical coordinates.

x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta.
rcosθ+rsinθ=4r\cos\theta + r\sin\theta = 4.
r(cosθ+sinθ)=4r(\cos\theta + \sin\theta) = 4.
2

6. $x + y + z = 1$ to spherical coordinates.

x=ρsinϕcosθx = \rho\sin\phi\cos\theta, y=ρsinϕsinθy = \rho\sin\phi\sin\theta, z=ρcosϕz = \rho\cos\phi.
ρsinϕcosθ+ρsinϕsinθ+ρcosϕ=1\rho\sin\phi\cos\theta + \rho\sin\phi\sin\theta + \rho\cos\phi = 1.
ρ(sinϕcosθ+sinϕsinθ+cosϕ)=1\rho(\sin\phi\cos\theta + \sin\phi\sin\theta + \cos\phi) = 1.
ρ(sinϕ(cosθ+sinθ)+cosϕ)=1\rho(\sin\phi(\cos\theta + \sin\theta) + \cos\phi) = 1.
2

7. $x^2 + y^2 = 9$ to spherical coordinates.

x2+y2=ρ2sin2ϕx^2 + y^2 = \rho^2\sin^2\phi.
ρ2sin2ϕ=9\rho^2\sin^2\phi = 9.

3. Final Answer

1

7. $r^2 = 9$

1

8. $r^2\cos(2\theta) = 25$

1

9. $r^2 + 4z^2 = 10$

2

0. $\rho^2(1 + 3\cos^2\phi) = 10$

2

1. $\tan\phi = \pm\sqrt{2}$

2

2. $\rho^2(\sin^2\phi\cos(2\theta) - \cos^2\phi) = 1$

2

3. $\rho^2(1 + \cos^2\phi) = 4$

2

4. $r^2 + z^2 = 2z$

2

5. $r(\cos\theta + \sin\theta) = 4$

2

6. $\rho(\sin\phi(\cos\theta + \sin\theta) + \cos\phi) = 1$

2

7. $\rho^2\sin^2\phi = 9$

Related problems in "Geometry"

The problem asks which of the given lines is perpendicular to the line $x + 2y - 1 = 0$. The options...

Linear EquationsPerpendicular LinesSlopeCoordinate Geometry
2025/6/16

The problem asks to put the steps for constructing a right-angled triangle with a base of 10 cm and ...

Triangle ConstructionRight-Angled TriangleGeometric Construction
2025/6/16

The problem is to arrange the steps to construct a right-angled triangle with a base of 10 cm and a ...

Geometric ConstructionRight TriangleCompass and Straightedge
2025/6/16

The problem asks to arrange the steps for constructing triangle $XYZ$ given that $XY = 10$ cm, $XZ =...

Triangle ConstructionEuclidean GeometryGeometric Construction
2025/6/16

Given three vectors $\vec{a} = 6\hat{i} + 3\hat{j} - 9\hat{k}$, $\vec{b} = 12\hat{i} - 8\hat{j} - 4\...

VectorsDot ProductCross ProductScalar Triple ProductVector Triple Product3D Geometry
2025/6/15

The problem asks to prove the Angle Sum Theorem for a triangle, which states that the sum of the int...

Angle Sum TheoremTrianglesGeometric ProofParallel LinesAlternate Interior Angles
2025/6/15

We are given a triangle $ABC$ with an angle $A = 55^\circ$. We are also given that $DE$ is parallel ...

TrianglesParallel LinesAnglesGeometric Proof
2025/6/15

The problem describes a geometric construction. It asks us to: i. Construct triangle ABC with $AB = ...

Geometric ConstructionTrianglesTrapeziumsCirclesArea CalculationAnglesParallel LinesPerpendicular Bisector
2025/6/15

The problem asks to perform a series of geometric constructions and calculations based on the given ...

Geometric ConstructionTrianglesTrapeziumsCirclesAnglesArea CalculationLaw of Cosines
2025/6/15

Given that vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ are coplanar, we need to show that the determ...

VectorsDeterminantsLinear AlgebraCoplanar VectorsDot Product
2025/6/15