First, rewrite the function using fractional exponents:
y=(ax+b)32 Now, we differentiate y with respect to x using the chain rule. The chain rule states that if y=f(u) and u=g(x), then dxdy=dudy⋅dxdu. Let u=ax+b. Then y=u32. dudy=32u32−1=32u−31 dxdu=dxd(ax+b)=a Using the chain rule:
dxdy=dudy⋅dxdu=32u−31⋅a=32a(ax+b)−31 Rewrite the expression with the cube root:
dxdy=33ax+b2a