We are asked to evaluate the expression $(\frac{5}{9})^7$.

ArithmeticExponentsFractionsPowers
2025/4/23

1. Problem Description

We are asked to evaluate the expression (59)7(\frac{5}{9})^7.

2. Solution Steps

We need to raise the fraction 59\frac{5}{9} to the power of

7. That means we need to raise both the numerator and the denominator to the power of

7. $(\frac{a}{b})^n = \frac{a^n}{b^n}$

So, we have:
(59)7=5797(\frac{5}{9})^7 = \frac{5^7}{9^7}
57=5×5×5×5×5×5×5=781255^7 = 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 = 78125
97=9×9×9×9×9×9×9=47829699^7 = 9 \times 9 \times 9 \times 9 \times 9 \times 9 \times 9 = 4782969
Therefore, (59)7=781254782969(\frac{5}{9})^7 = \frac{78125}{4782969}

3. Final Answer

781254782969\frac{78125}{4782969}