The problem asks to evaluate the expression $(7 \cdot 8)^3$.

ArithmeticExponentsOrder of OperationsMultiplication
2025/4/23

1. Problem Description

The problem asks to evaluate the expression (78)3(7 \cdot 8)^3.

2. Solution Steps

First, we multiply 7 and

8. $7 \cdot 8 = 56$

Then, we raise the result to the power of

3. $56^3 = 56 \cdot 56 \cdot 56$

5656=313656 \cdot 56 = 3136
313656=1756163136 \cdot 56 = 175616
Alternatively, we can use the power of a product rule: (ab)n=anbn(ab)^n = a^n b^n. Therefore
(78)3=7383=343512=175616(7 \cdot 8)^3 = 7^3 \cdot 8^3 = 343 \cdot 512 = 175616.
73=777=497=3437^3 = 7 \cdot 7 \cdot 7 = 49 \cdot 7 = 343
83=888=648=5128^3 = 8 \cdot 8 \cdot 8 = 64 \cdot 8 = 512
343512=175616343 \cdot 512 = 175616

3. Final Answer

175616

Related problems in "Arithmetic"