The problem asks to simplify expressions involving multiplication of numbers raised to some power. The problems are: 1. $7^4 \cdot 7^7$
2025/4/24
1. Problem Description
The problem asks to simplify expressions involving multiplication of numbers raised to some power. The problems are:
1. $7^4 \cdot 7^7$
2. $9^6 \cdot 9^8$
3. $2^7 \cdot 2^4$
4. $5^6 \cdot 5^8$
5. $7^9 \cdot 7^3$
6. $4^7 \cdot 4^2$
7. $5^8 \cdot 5^7$
8. $4^2 \cdot 4^5$
9. $9^8 \cdot 9^3$
1
0. $5^8 \cdot 5^6$
2. Solution Steps
We use the rule of exponents that states:
1. $7^4 \cdot 7^7 = 7^{4+7} = 7^{11}$
2. $9^6 \cdot 9^8 = 9^{6+8} = 9^{14}$
3. $2^7 \cdot 2^4 = 2^{7+4} = 2^{11}$
4. $5^6 \cdot 5^8 = 5^{6+8} = 5^{14}$
5. $7^9 \cdot 7^3 = 7^{9+3} = 7^{12}$
6. $4^7 \cdot 4^2 = 4^{7+2} = 4^9$
7. $5^8 \cdot 5^7 = 5^{8+7} = 5^{15}$
8. $4^2 \cdot 4^5 = 4^{2+5} = 4^7$
9. $9^8 \cdot 9^3 = 9^{8+3} = 9^{11}$
1
0. $5^8 \cdot 5^6 = 5^{8+6} = 5^{14}$
3. Final Answer
1. $7^{11}$
2. $9^{14}$
3. $2^{11}$
4. $5^{14}$
5. $7^{12}$
6. $4^9$
7. $5^{15}$
8. $4^7$
9. $9^{11}$
1