はい、承知いたしました。画像の問題を解きます。

代数学式の展開因数分解多項式
2025/4/24
はい、承知いたしました。画像の問題を解きます。
**

1. 問題の内容**

1

7. 次の式を展開せよ。

(1) (x+1)(x1)(x2)(x4)(x+1)(x-1)(x-2)(x-4)
(2) (xy)2(x+y)2(x2+y2)2(x-y)^2(x+y)^2(x^2+y^2)^2
(3) (m22m1)2(m^2-2m-1)^2
(4) (a+bcd)(abc+d)(a+b-c-d)(a-b-c+d)
1

8. 次の式を因数分解せよ。

(1) 2x3+2x2y6x22x^3 + 2x^2y - 6x^2
(2) x(x+1)+x+1x(x+1) + x + 1
(3) a(xy)2(yx)a(x-y) - 2(y-x)
(4) x28x+16x^2 - 8x + 16
(5) 4x225y24x^2 - 25y^2
(6) a2+7a18a^2 + 7a - 18
(7) 3x2+5x+23x^2 + 5x + 2
(8) 3x27x+23x^2 - 7x + 2
(9) 6x2+x16x^2 + x - 1
(10) 12x27xy12y212x^2 - 7xy - 12y^2
**

2. 解き方の手順**

1

7. 式の展開

(1)
まず、(x+1)(x1)(x+1)(x-1)(x2)(x4)(x-2)(x-4) をそれぞれ展開します。
(x+1)(x1)=x21(x+1)(x-1) = x^2 - 1
(x2)(x4)=x26x+8(x-2)(x-4) = x^2 - 6x + 8
次に、得られた式を掛け合わせます。
(x21)(x26x+8)=x46x3+8x2x2+6x8=x46x3+7x2+6x8(x^2 - 1)(x^2 - 6x + 8) = x^4 - 6x^3 + 8x^2 - x^2 + 6x - 8 = x^4 - 6x^3 + 7x^2 + 6x - 8
(2)
(xy)2(x+y)2(x2+y2)2(x-y)^2(x+y)^2(x^2+y^2)^2
まず、(xy)(x+y)=x2y2(x-y)(x+y) = x^2 - y^2 なので、
(xy)2(x+y)2=[(xy)(x+y)]2=(x2y2)2=x42x2y2+y4(x-y)^2(x+y)^2 = [(x-y)(x+y)]^2 = (x^2 - y^2)^2 = x^4 - 2x^2y^2 + y^4
次に、 (x2+y2)2=x4+2x2y2+y4(x^2+y^2)^2 = x^4 + 2x^2y^2 + y^4
したがって、
(x42x2y2+y4)(x4+2x2y2+y4)=(x4+y42x2y2)(x4+y4+2x2y2)=(x4+y4)2(2x2y2)2=x8+2x4y4+y84x4y4=x82x4y4+y8(x^4 - 2x^2y^2 + y^4)(x^4 + 2x^2y^2 + y^4) = (x^4 + y^4 - 2x^2y^2)(x^4 + y^4 + 2x^2y^2) = (x^4 + y^4)^2 - (2x^2y^2)^2 = x^8 + 2x^4y^4 + y^8 - 4x^4y^4 = x^8 - 2x^4y^4 + y^8
(3)
(m22m1)2=((m22m)1)2=(m22m)22(m22m)+1=m44m3+4m22m2+4m+1=m44m3+2m2+4m+1(m^2 - 2m - 1)^2 = ((m^2 - 2m) - 1)^2 = (m^2 - 2m)^2 - 2(m^2 - 2m) + 1 = m^4 - 4m^3 + 4m^2 - 2m^2 + 4m + 1 = m^4 - 4m^3 + 2m^2 + 4m + 1
(4)
(a+bcd)(abc+d)=[a(c+d)+b][a(cd)b]=[a(c+d)](a(cd))b2(a+b-c-d)(a-b-c+d) = [a-(c+d)+b][a-(c-d)-b] = [a - (c+d)](a - (c-d)) -b^2
=a2a(cd)a(c+d)+(c+d)(cd)b2=a2ac+adacad+(c2d2)b2=a22ac+c2d2b2 = a^2 -a(c-d) -a(c+d) + (c+d)(c-d) -b^2 = a^2 -ac + ad -ac - ad + (c^2 -d^2) -b^2 = a^2 - 2ac + c^2 -d^2 -b^2
1

8. 因数分解

(1) 2x3+2x2y6x2=2x2(x+y3)2x^3 + 2x^2y - 6x^2 = 2x^2(x + y - 3)
(2) x(x+1)+x+1=x2+x+x+1=x2+2x+1=(x+1)2x(x+1) + x + 1 = x^2 + x + x + 1 = x^2 + 2x + 1 = (x+1)^2
(3) a(xy)2(yx)=a(xy)+2(xy)=(a+2)(xy)a(x-y) - 2(y-x) = a(x-y) + 2(x-y) = (a+2)(x-y)
(4) x28x+16=(x4)2x^2 - 8x + 16 = (x-4)^2
(5) 4x225y2=(2x)2(5y)2=(2x5y)(2x+5y)4x^2 - 25y^2 = (2x)^2 - (5y)^2 = (2x - 5y)(2x + 5y)
(6) a2+7a18=(a+9)(a2)a^2 + 7a - 18 = (a+9)(a-2)
(7) 3x2+5x+2=(3x+2)(x+1)3x^2 + 5x + 2 = (3x+2)(x+1)
(8) 3x27x+2=(3x1)(x2)3x^2 - 7x + 2 = (3x-1)(x-2)
(9) 6x2+x1=(3x1)(2x+1)6x^2 + x - 1 = (3x-1)(2x+1)
(10) 12x27xy12y2=(4x+3y)(3x4y)12x^2 - 7xy - 12y^2 = (4x+3y)(3x-4y)
**

3. 最終的な答え**

1

7. 式の展開

(1) x46x3+7x2+6x8x^4 - 6x^3 + 7x^2 + 6x - 8
(2) x82x4y4+y8x^8 - 2x^4y^4 + y^8
(3) m44m3+2m2+4m+1m^4 - 4m^3 + 2m^2 + 4m + 1
(4) a22ac+c2b2d2a^2 - 2ac + c^2 - b^2 - d^2
1

8. 因数分解

(1) 2x2(x+y3)2x^2(x + y - 3)
(2) (x+1)2(x+1)^2
(3) (a+2)(xy)(a+2)(x-y)
(4) (x4)2(x-4)^2
(5) (2x5y)(2x+5y)(2x - 5y)(2x + 5y)
(6) (a+9)(a2)(a+9)(a-2)
(7) (3x+2)(x+1)(3x+2)(x+1)
(8) (3x1)(x2)(3x-1)(x-2)
(9) (3x1)(2x+1)(3x-1)(2x+1)
(10) (4x+3y)(3x4y)(4x+3y)(3x-4y)