We are given three problems: (a) Evaluate the expression $\frac{4.56 \times 3.6}{0.12}$. (b) Evaluate $(73.8)^2 - (26.2)^2$ without using mathematical tables or a calculator. (c) Simplify $\sqrt{1\frac{19}{81}}$ and express the answer in the form $\frac{a}{b}$, where $a$ and $b$ are positive integers.

ArithmeticArithmetic OperationsFractionsSquare RootsDifference of SquaresDecimal Arithmetic
2025/4/24

1. Problem Description

We are given three problems:
(a) Evaluate the expression 4.56×3.60.12\frac{4.56 \times 3.6}{0.12}.
(b) Evaluate (73.8)2(26.2)2(73.8)^2 - (26.2)^2 without using mathematical tables or a calculator.
(c) Simplify 11981\sqrt{1\frac{19}{81}} and express the answer in the form ab\frac{a}{b}, where aa and bb are positive integers.

2. Solution Steps

(a) Evaluate 4.56×3.60.12\frac{4.56 \times 3.6}{0.12}:
4.56×3.60.12=4.56×3.6×1000.12×100=4.56×36012=4.56×30\frac{4.56 \times 3.6}{0.12} = \frac{4.56 \times 3.6 \times 100}{0.12 \times 100} = \frac{4.56 \times 360}{12} = 4.56 \times 30
4.56×30=4.56×3×10=13.68×10=136.84.56 \times 30 = 4.56 \times 3 \times 10 = 13.68 \times 10 = 136.8
(b) Evaluate (73.8)2(26.2)2(73.8)^2 - (26.2)^2:
Using the difference of squares formula, a2b2=(a+b)(ab)a^2 - b^2 = (a+b)(a-b),
(73.8)2(26.2)2=(73.8+26.2)(73.826.2)(73.8)^2 - (26.2)^2 = (73.8+26.2)(73.8-26.2)
=(100)(47.6)=4760= (100)(47.6) = 4760
(c) Simplify 11981\sqrt{1\frac{19}{81}}:
First, convert the mixed number to an improper fraction: 11981=1×81+1981=81+1981=100811\frac{19}{81} = \frac{1 \times 81 + 19}{81} = \frac{81+19}{81} = \frac{100}{81}
Then, take the square root: 10081=10081=109\sqrt{\frac{100}{81}} = \frac{\sqrt{100}}{\sqrt{81}} = \frac{10}{9}

3. Final Answer

(a) 136.8
(b) 4760
(c) 109\frac{10}{9}

Related problems in "Arithmetic"