The problem asks how many digits are used to number a book with 2024 pages.

ArithmeticCountingDigit CountingNumber of Digits
2025/5/3

1. Problem Description

The problem asks how many digits are used to number a book with 2024 pages.

2. Solution Steps

First, we consider the number of digits used for single-digit page numbers (1 to 9).
There are 9 such page numbers, so we use 9×1=99 \times 1 = 9 digits.
Next, we consider the number of digits used for double-digit page numbers (10 to 99).
There are 9910+1=9099 - 10 + 1 = 90 such page numbers, so we use 90×2=18090 \times 2 = 180 digits.
Next, we consider the number of digits used for triple-digit page numbers (100 to 999).
There are 999100+1=900999 - 100 + 1 = 900 such page numbers, so we use 900×3=2700900 \times 3 = 2700 digits.
Finally, we consider the number of digits used for four-digit page numbers (1000 to 2024).
There are 20241000+1=10252024 - 1000 + 1 = 1025 such page numbers, so we use 1025×4=41001025 \times 4 = 4100 digits.
The total number of digits used is 9+180+2700+4100=69899 + 180 + 2700 + 4100 = 6989.

3. Final Answer

6989