We are asked to evaluate the expression $(\frac{1}{5} + \frac{2}{3}) : \sqrt{\frac{4}{25}}$.
2025/5/6
1. Problem Description
We are asked to evaluate the expression .
2. Solution Steps
First, we add the fractions inside the parenthesis. The least common denominator of and is . Thus, we have
\frac{1}{5} + \frac{2}{3} = \frac{1 \times 3}{5 \times 3} + \frac{2 \times 5}{3 \times 5} = \frac{3}{15} + \frac{10}{15} = \frac{3+10}{15} = \frac{13}{15}.
Next, we evaluate the square root:
\sqrt{\frac{4}{25}} = \frac{\sqrt{4}}{\sqrt{25}} = \frac{2}{5}.
Now, we divide the result of the sum by the result of the square root:
\frac{13}{15} : \frac{2}{5} = \frac{13}{15} \div \frac{2}{5} = \frac{13}{15} \times \frac{5}{2} = \frac{13 \times 5}{15 \times 2} = \frac{13 \times 5}{3 \times 5 \times 2} = \frac{13}{3 \times 2} = \frac{13}{6}.