First, we express each number in terms of its prime factors:
216=63=(2⋅3)3=23⋅33 Now, substitute these into the given expression:
21641621941=(23⋅33)41(2⋅3)21(32)41 Using the power of a product rule (ab)n=anbn and the power of a power rule (am)n=amn, we get: 243⋅343221⋅321⋅342=243⋅343221⋅321⋅321 Now, we simplify the expression by combining the terms with the same base using the rule anam=am−n: 221−43⋅321+21−43=242−43⋅344−43=2−41⋅341 Rewriting this using the property a−n=an1, we have: 241341=(23)41