Problem 1:
First, we rationalize the denominator of the given fraction:
3 2 − 3 2 3 − 2 = 3 2 − 3 2 3 − 2 ⋅ 2 3 + 2 2 3 + 2 \frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}} = \frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}} \cdot \frac{2\sqrt{3} + \sqrt{2}}{2\sqrt{3} + \sqrt{2}} 2 3 − 2 3 2 − 3 = 2 3 − 2 3 2 − 3 ⋅ 2 3 + 2 2 3 + 2
Now, we multiply the numerators and denominators:
Numerator: ( 3 2 − 3 ) ( 2 3 + 2 ) = 3 2 ( 2 3 ) + 3 2 ( 2 ) − 3 ( 2 3 ) − 3 ( 2 ) = 6 6 + 6 − 6 − 6 = 5 6 (3\sqrt{2} - \sqrt{3})(2\sqrt{3} + \sqrt{2}) = 3\sqrt{2}(2\sqrt{3}) + 3\sqrt{2}(\sqrt{2}) - \sqrt{3}(2\sqrt{3}) - \sqrt{3}(\sqrt{2}) = 6\sqrt{6} + 6 - 6 - \sqrt{6} = 5\sqrt{6} ( 3 2 − 3 ) ( 2 3 + 2 ) = 3 2 ( 2 3 ) + 3 2 ( 2 ) − 3 ( 2 3 ) − 3 ( 2 ) = 6 6 + 6 − 6 − 6 = 5 6
Denominator: ( 2 3 − 2 ) ( 2 3 + 2 ) = ( 2 3 ) 2 − ( 2 ) 2 = 4 ( 3 ) − 2 = 12 − 2 = 10 (2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2}) = (2\sqrt{3})^2 - (\sqrt{2})^2 = 4(3) - 2 = 12 - 2 = 10 ( 2 3 − 2 ) ( 2 3 + 2 ) = ( 2 3 ) 2 − ( 2 ) 2 = 4 ( 3 ) − 2 = 12 − 2 = 10
So, the expression becomes 5 6 10 = 6 2 = 6 4 = 6 ⋅ 2.5 4 ⋅ 2.5 = 15 10 \frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6 \cdot 2.5}}{\sqrt{4 \cdot 2.5}} = \frac{\sqrt{15}}{\sqrt{10}} 10 5 6 = 2 6 = 4 6 = 4 ⋅ 2.5 6 ⋅ 2.5 = 10 15 .
However, we have 5 6 10 = 25 6 100 = 150 100 \frac{5\sqrt{6}}{10} = \frac{\sqrt{25} \sqrt{6}}{\sqrt{100}} = \frac{\sqrt{150}}{\sqrt{100}} 10 5 6 = 100 25 6 = 100 150
Problem 2:
We are given x + 8 + x + 1 = 7 \sqrt{x+8} + \sqrt{x+1} = 7 x + 8 + x + 1 = 7 . Isolate one of the square roots: x + 8 = 7 − x + 1 \sqrt{x+8} = 7 - \sqrt{x+1} x + 8 = 7 − x + 1 Square both sides: ( x + 8 ) 2 = ( 7 − x + 1 ) 2 (\sqrt{x+8})^2 = (7 - \sqrt{x+1})^2 ( x + 8 ) 2 = ( 7 − x + 1 ) 2 x + 8 = 49 − 14 x + 1 + ( x + 1 ) x+8 = 49 - 14\sqrt{x+1} + (x+1) x + 8 = 49 − 14 x + 1 + ( x + 1 ) x + 8 = 50 + x − 14 x + 1 x+8 = 50+x - 14\sqrt{x+1} x + 8 = 50 + x − 14 x + 1 Subtract x x x from both sides: 8 = 50 − 14 x + 1 8 = 50 - 14\sqrt{x+1} 8 = 50 − 14 x + 1 − 42 = − 14 x + 1 -42 = -14\sqrt{x+1} − 42 = − 14 x + 1 3 = x + 1 3 = \sqrt{x+1} 3 = x + 1 Square both sides: 9 = x + 1 9 = x+1 9 = x + 1 Check the solution: 8 + 8 + 8 + 1 = 16 + 9 = 4 + 3 = 7 \sqrt{8+8} + \sqrt{8+1} = \sqrt{16} + \sqrt{9} = 4 + 3 = 7 8 + 8 + 8 + 1 = 16 + 9 = 4 + 3 = 7 . Thus, x = 8 x=8 x = 8 is a solution.