To express the given fraction in the required form, we need to rationalize the denominator. We multiply both the numerator and the denominator by the conjugate of the denominator, which is 2 3 + 2 2\sqrt{3} + \sqrt{2} 2 3 + 2 .
3 2 − 3 2 3 − 2 = 3 2 − 3 2 3 − 2 ⋅ 2 3 + 2 2 3 + 2 \frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}} = \frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}} \cdot \frac{2\sqrt{3} + \sqrt{2}}{2\sqrt{3} + \sqrt{2}} 2 3 − 2 3 2 − 3 = 2 3 − 2 3 2 − 3 ⋅ 2 3 + 2 2 3 + 2
Now, multiply the numerators and denominators:
Numerator: ( 3 2 − 3 ) ( 2 3 + 2 ) = 3 2 ⋅ 2 3 + 3 2 ⋅ 2 − 3 ⋅ 2 3 − 3 ⋅ 2 = 6 6 + 6 − 6 − 6 = 5 6 (3\sqrt{2} - \sqrt{3})(2\sqrt{3} + \sqrt{2}) = 3\sqrt{2} \cdot 2\sqrt{3} + 3\sqrt{2} \cdot \sqrt{2} - \sqrt{3} \cdot 2\sqrt{3} - \sqrt{3} \cdot \sqrt{2} = 6\sqrt{6} + 6 - 6 - \sqrt{6} = 5\sqrt{6} ( 3 2 − 3 ) ( 2 3 + 2 ) = 3 2 ⋅ 2 3 + 3 2 ⋅ 2 − 3 ⋅ 2 3 − 3 ⋅ 2 = 6 6 + 6 − 6 − 6 = 5 6
Denominator: ( 2 3 − 2 ) ( 2 3 + 2 ) = ( 2 3 ) 2 − ( 2 ) 2 = 4 ⋅ 3 − 2 = 12 − 2 = 10 (2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2}) = (2\sqrt{3})^2 - (\sqrt{2})^2 = 4 \cdot 3 - 2 = 12 - 2 = 10 ( 2 3 − 2 ) ( 2 3 + 2 ) = ( 2 3 ) 2 − ( 2 ) 2 = 4 ⋅ 3 − 2 = 12 − 2 = 10
So, we have:
5 6 10 = 6 2 \frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2} 10 5 6 = 2 6
Now, we want to express this in the form m n \frac{\sqrt{m}}{\sqrt{n}} n m . We can write 2 2 2 as 4 \sqrt{4} 4 . 6 2 = 6 4 \frac{\sqrt{6}}{2} = \frac{\sqrt{6}}{\sqrt{4}} 2 6 = 4 6
If we multiply both the numerator and denominator by 2.5 \sqrt{2.5} 2.5 we get: 6 4 = 6 ⋅ 2.5 4 ⋅ 2.5 = 15 10 \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6} \cdot \sqrt{2.5}}{\sqrt{4} \cdot \sqrt{2.5}} = \frac{\sqrt{15}}{\sqrt{10}} 4 6 = 4 ⋅ 2.5 6 ⋅ 2.5 = 10 15 . This is not one of the choices
The options are:
(a) 6 10 \frac{\sqrt{6}}{\sqrt{10}} 10 6 (b) 150 100 \frac{\sqrt{150}}{\sqrt{100}} 100 150 (c) 2 6 10 \frac{2\sqrt{6}}{\sqrt{10}} 10 2 6 (d) 5 6 10 \frac{5\sqrt{6}}{\sqrt{10}} 10 5 6
Let's simplify each option to see which one is equal to 6 2 \frac{\sqrt{6}}{2} 2 6 .
(a) 6 10 = 6 10 \frac{\sqrt{6}}{\sqrt{10}} = \frac{\sqrt{6}}{\sqrt{10}} 10 6 = 10 6
(b) 150 100 = 25 ⋅ 6 10 = 5 6 10 = 6 2 \frac{\sqrt{150}}{\sqrt{100}} = \frac{\sqrt{25 \cdot 6}}{10} = \frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2} 100 150 = 10 25 ⋅ 6 = 10 5 6 = 2 6
(c) 2 6 10 \frac{2\sqrt{6}}{\sqrt{10}} 10 2 6
(d) 5 6 10 \frac{5\sqrt{6}}{\sqrt{10}} 10 5 6