Given the probabilities $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{5}$, $P(AB) = \frac{1}{10}$, $P(AC) = \frac{1}{15}$, $P(BC) = \frac{1}{20}$, and $P(ABC) = \frac{1}{30}$, we need to find the probabilities of the following events: $A \cup B$, $\overline{AB}$, $A \cup B \cup C$, $\overline{ABC}$, $\overline{AB}C$, and $\overline{AB} \cup C$.

Probability and StatisticsProbabilityInclusion-Exclusion PrincipleDe Morgan's LawSet TheoryConditional Probability
2025/3/20

1. Problem Description

Given the probabilities P(A)=12P(A) = \frac{1}{2}, P(B)=13P(B) = \frac{1}{3}, P(C)=15P(C) = \frac{1}{5}, P(AB)=110P(AB) = \frac{1}{10}, P(AC)=115P(AC) = \frac{1}{15}, P(BC)=120P(BC) = \frac{1}{20}, and P(ABC)=130P(ABC) = \frac{1}{30}, we need to find the probabilities of the following events: ABA \cup B, AB\overline{AB}, ABCA \cup B \cup C, ABC\overline{ABC}, ABC\overline{AB}C, and ABC\overline{AB} \cup C.

2. Solution Steps

(1) P(AB)P(A \cup B):
Using the inclusion-exclusion principle:
P(AB)=P(A)+P(B)P(AB)P(A \cup B) = P(A) + P(B) - P(AB)
P(AB)=12+13110=1530+1030330=2230=1115P(A \cup B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{10} = \frac{15}{30} + \frac{10}{30} - \frac{3}{30} = \frac{22}{30} = \frac{11}{15}
(2) P(AB)P(\overline{AB}):
Using De Morgan's Law:
P(AB)=P(AB)=1P(AB)P(\overline{AB}) = P(\overline{A \cup B}) = 1 - P(A \cup B)
P(AB)=11115=415P(\overline{AB}) = 1 - \frac{11}{15} = \frac{4}{15}
(3) P(ABC)P(A \cup B \cup C):
Using the inclusion-exclusion principle:
P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)
P(ABC)=12+13+15110115120+130P(A \cup B \cup C) = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} - \frac{1}{10} - \frac{1}{15} - \frac{1}{20} + \frac{1}{30}
P(ABC)=3060+2060+1260660460360+260=5160=1720P(A \cup B \cup C) = \frac{30}{60} + \frac{20}{60} + \frac{12}{60} - \frac{6}{60} - \frac{4}{60} - \frac{3}{60} + \frac{2}{60} = \frac{51}{60} = \frac{17}{20}
(4) P(ABC)P(\overline{ABC}):
P(ABC)=P(ABC)=1P(ABC)=1P(ABC)P(\overline{ABC}) = P(\overline{A \cap B \cap C}) = 1 - P(A \cap B \cap C) = 1 - P(ABC)
P(ABC)=1130=2930P(\overline{ABC}) = 1 - \frac{1}{30} = \frac{29}{30}
(5) P(ABC)P(\overline{AB}C):
P(ABC)=P((AB)C)=P((AC)(BC))P(\overline{AB}C) = P((\overline{A} \cup \overline{B}) \cap C) = P((\overline{A} \cap C) \cup (\overline{B} \cap C))
=P(AC)+P(BC)P(ABC)=(P(C)P(AC))+(P(C)P(BC))(P(C)P(AC)P(BC)+P(ABC))= P(\overline{A} \cap C) + P(\overline{B} \cap C) - P(\overline{A} \cap \overline{B} \cap C) = (P(C) - P(AC)) + (P(C) - P(BC)) - (P(C) - P(AC) - P(BC) + P(ABC))
=P(C)P(AC)+P(C)P(BC)P(C)+P(AC)+P(BC)P(ABC)=P(C)P(ABC)= P(C) - P(AC) + P(C) - P(BC) - P(C) + P(AC) + P(BC) - P(ABC) = P(C) - P(ABC)
P(ABC)=15130=630130=530=16P(\overline{AB}C) = \frac{1}{5} - \frac{1}{30} = \frac{6}{30} - \frac{1}{30} = \frac{5}{30} = \frac{1}{6}
Alternatively, P(ABC)=P((AB)C)=P(C)P(ABC)=15130=16P(\overline{AB}C) = P((\overline{A} \cup \overline{B})C) = P(C) - P(ABC) = \frac{1}{5} - \frac{1}{30} = \frac{1}{6}
(6) P(ABC)P(\overline{AB} \cup C):
P(ABC)=P(AB)+P(C)P(ABC)=415+1516P(\overline{AB} \cup C) = P(\overline{AB}) + P(C) - P(\overline{AB} \cap C) = \frac{4}{15} + \frac{1}{5} - \frac{1}{6}
P(ABC)=415+31516=71516=1430530=930=310P(\overline{AB} \cup C) = \frac{4}{15} + \frac{3}{15} - \frac{1}{6} = \frac{7}{15} - \frac{1}{6} = \frac{14}{30} - \frac{5}{30} = \frac{9}{30} = \frac{3}{10}
P(ABC)=P((AB)C)P(\overline{AB} \cup C) = P((\overline{A} \cup \overline{B}) \cup C)
Using P(AB)=415P(\overline{AB}) = \frac{4}{15} and P(ABC)=16P(\overline{AB} C) = \frac{1}{6},
P(ABC)=P(AB)+P(C)P(ABC)P(\overline{AB} \cup C) = P(\overline{AB}) + P(C) - P(\overline{AB} C)
=415+1516=415+31516=71516=1430530=930=310= \frac{4}{15} + \frac{1}{5} - \frac{1}{6} = \frac{4}{15} + \frac{3}{15} - \frac{1}{6} = \frac{7}{15} - \frac{1}{6} = \frac{14}{30} - \frac{5}{30} = \frac{9}{30} = \frac{3}{10}

3. Final Answer

P(AB)=1115P(A \cup B) = \frac{11}{15}
P(AB)=415P(\overline{AB}) = \frac{4}{15}
P(ABC)=1720P(A \cup B \cup C) = \frac{17}{20}
P(ABC)=2930P(\overline{ABC}) = \frac{29}{30}
P(ABC)=16P(\overline{AB}C) = \frac{1}{6}
P(ABC)=310P(\overline{AB} \cup C) = \frac{3}{10}

Related problems in "Probability and Statistics"

The problem asks us to estimate the median height and the 40th percentile from a cumulative frequenc...

StatisticsPercentilesMedianCumulative Frequency Diagram
2025/6/25

The problem asks to use a frequency table (presumably from a previous page) to complete the cumulati...

Cumulative FrequencyMedianPercentileData AnalysisStatistics
2025/6/25

The problem provides a table of heights of 120 boys in an athletics club, grouped into classes. (a) ...

ProbabilityStatisticsMeanModal ClassFrequency Distribution
2025/6/25

The problem provides a partially completed cumulative frequency table and asks to complete the table...

Cumulative FrequencyMedianPercentilesData AnalysisStatistics
2025/6/25

The image represents a tree diagram where the first level has three branches labeled 1, 2, and 3. Ea...

Sample SpaceTree DiagramCombinations
2025/6/25

There are 16 balls numbered from 1 to 16 in a box. Four balls are randomly drawn from the box simult...

CombinationsProbabilityGeometric ProgressionArithmetic ProgressionCounting
2025/6/25

The image shows examples of right-skewed probability density curves. It gives three examples, where ...

Probability Density FunctionRight-Skewed DistributionProbabilityContinuous Random VariableIntegration
2025/6/18

The problem asks us to find the mean and median of the set of numbers: $1, 3, 3, 3, 4, 6, 99$. We ar...

MeanMedianDescriptive StatisticsOutliers
2025/6/18

The problem asks to calculate the mean mark obtained by the members of a class in terms of $a$, $b$,...

MeanStatisticsWeighted Average
2025/6/18

The problem consists of several questions related to statistics and sampling distributions. Specific...

Sampling DistributionsSample MeanProbabilityZ-scoreConfidence IntervalsT-distributionStatistical Inference
2025/6/17