(1) P(A∪B): Using the inclusion-exclusion principle:
P(A∪B)=P(A)+P(B)−P(AB) P(A∪B)=21+31−101=3015+3010−303=3022=1511 (2) P(AB): Using De Morgan's Law:
P(AB)=P(A∪B)=1−P(A∪B) P(AB)=1−1511=154 (3) P(A∪B∪C): Using the inclusion-exclusion principle:
P(A∪B∪C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC) P(A∪B∪C)=21+31+51−101−151−201+301 P(A∪B∪C)=6030+6020+6012−606−604−603+602=6051=2017 (4) P(ABC): P(ABC)=P(A∩B∩C)=1−P(A∩B∩C)=1−P(ABC) P(ABC)=1−301=3029 (5) P(ABC): P(ABC)=P((A∪B)∩C)=P((A∩C)∪(B∩C)) =P(A∩C)+P(B∩C)−P(A∩B∩C)=(P(C)−P(AC))+(P(C)−P(BC))−(P(C)−P(AC)−P(BC)+P(ABC)) =P(C)−P(AC)+P(C)−P(BC)−P(C)+P(AC)+P(BC)−P(ABC)=P(C)−P(ABC) P(ABC)=51−301=306−301=305=61 Alternatively, P(ABC)=P((A∪B)C)=P(C)−P(ABC)=51−301=61 (6) P(AB∪C): P(AB∪C)=P(AB)+P(C)−P(AB∩C)=154+51−61 P(AB∪C)=154+153−61=157−61=3014−305=309=103 P(AB∪C)=P((A∪B)∪C) Using P(AB)=154 and P(ABC)=61, P(AB∪C)=P(AB)+P(C)−P(ABC) =154+51−61=154+153−61=157−61=3014−305=309=103