The image presents a table of $X$ and $Y$ values. The problem requires further details since there are no specific questions provided. Let us assume that the task is to find the average of all the X values and the average of all the Y values.

ArithmeticAverageData AnalysisSummation
2025/5/8

1. Problem Description

The image presents a table of XX and YY values. The problem requires further details since there are no specific questions provided. Let us assume that the task is to find the average of all the X values and the average of all the Y values.

2. Solution Steps

First, let us count how many X and Y values there are in the image. Counting each individual number, we have 25 rows and 2 columns(X and Y), so there are 25×2=5025 \times 2 = 50 pairs of X and Y values. So there are 50 X values and 50 Y values in total.
Next, we add all the X values together.
70.3+81.3+85.4+72.3+82.4+76.7+77.8+76.6+78.1+76.7+80.0+78.3+75.2+75.3+74.0+77.4+78.9+77.2+76.5+78.3+69.5+81.7+82.6+82.3+75.0+72.7+83.8+84.4+78.0+76.2+74.2+77.7+77.1+81.3+76.5+79.9+78.2+81.2+80.6+80.4+66.1+90.9+91.5+87.7+75.3+87.0+82.6+79.7+87.6+82.4+77.0+79.8+79.3+79.2+79.7+80.8+79.2+81.0+78.9+76.5+82.3+76.8+73.6+84.1+79.0+80.7+76.3+83.0+75.9+76.0+81.1+80.3+72.6+75.4+73.5+80.7+78.9+78.3+76.1+80.1+82.3+70.3+76.1+67.7+72.1+77.9+78.8+85.3+84.2+73.2+80.3+78.4+77.2+77.8+79.1+76.2+77.1+77.2+76.6+78.5=3870.570.3 + 81.3 + 85.4 + 72.3 + 82.4 + 76.7 + 77.8 + 76.6 + 78.1 + 76.7 + 80.0 + 78.3 + 75.2 + 75.3 + 74.0 + 77.4 + 78.9 + 77.2 + 76.5 + 78.3 + 69.5 + 81.7 + 82.6 + 82.3 + 75.0 + 72.7 + 83.8 + 84.4 + 78.0 + 76.2 + 74.2 + 77.7 + 77.1 + 81.3 + 76.5 + 79.9 + 78.2 + 81.2 + 80.6 + 80.4 + 66.1 + 90.9 + 91.5 + 87.7 + 75.3 + 87.0 + 82.6 + 79.7 + 87.6 + 82.4 + 77.0 + 79.8 + 79.3 + 79.2 + 79.7 + 80.8 + 79.2 + 81.0 + 78.9 + 76.5 + 82.3 + 76.8 + 73.6 + 84.1 + 79.0 + 80.7 + 76.3 + 83.0 + 75.9 + 76.0 + 81.1 + 80.3 + 72.6 + 75.4 + 73.5 + 80.7 + 78.9 + 78.3 + 76.1 + 80.1 + 82.3 + 70.3 + 76.1 + 67.7 + 72.1 + 77.9 + 78.8 + 85.3 + 84.2 + 73.2 + 80.3 + 78.4 + 77.2 + 77.8 + 79.1 + 76.2 + 77.1 + 77.2 + 76.6 + 78.5 = 3870.5
Then, we add all the Y values together.
91.4+90.7+86.2+56.3+92.3+81.3+69.4+75.5+81.3+87.3+72.2+83.2+74.2+84.4+79.6+73.3+73.7+81.9+82.3+80.1+64.7+70.7+89.0+78.3+80.8+79.9+75.6+82.2+67.2+80.1+75.3+79.9+85.0+77.6+77.8+73.6+80.4+80.7+81.7+74.0+82.4+82.0+72.0+66.8+72.5+86.7+69.8+78.4+77.4+80.0+74.5+77.3+68.1+85.2+81.5+77.7+73.0+81.4+79.5+72.5+98.6+69.1+75.3+81.9+92.8+66.1+68.7+69.7+75.9+68.1+81.9+82.0+73.0+79.7+75.9+73.0+76.7+73.7+75.5+80.7+94.6+59.5+62.0+64.2+84.0+83.5+81.8+86.9+76.2+87.8+69.3+70.1+77.7+83.3+73.1+80.9+79.8+80.5+77.4+78.2=3865.991.4 + 90.7 + 86.2 + 56.3 + 92.3 + 81.3 + 69.4 + 75.5 + 81.3 + 87.3 + 72.2 + 83.2 + 74.2 + 84.4 + 79.6 + 73.3 + 73.7 + 81.9 + 82.3 + 80.1 + 64.7 + 70.7 + 89.0 + 78.3 + 80.8 + 79.9 + 75.6 + 82.2 + 67.2 + 80.1 + 75.3 + 79.9 + 85.0 + 77.6 + 77.8 + 73.6 + 80.4 + 80.7 + 81.7 + 74.0 + 82.4 + 82.0 + 72.0 + 66.8 + 72.5 + 86.7 + 69.8 + 78.4 + 77.4 + 80.0 + 74.5 + 77.3 + 68.1 + 85.2 + 81.5 + 77.7 + 73.0 + 81.4 + 79.5 + 72.5 + 98.6 + 69.1 + 75.3 + 81.9 + 92.8 + 66.1 + 68.7 + 69.7 + 75.9 + 68.1 + 81.9 + 82.0 + 73.0 + 79.7 + 75.9 + 73.0 + 76.7 + 73.7 + 75.5 + 80.7 + 94.6 + 59.5 + 62.0 + 64.2 + 84.0 + 83.5 + 81.8 + 86.9 + 76.2 + 87.8 + 69.3 + 70.1 + 77.7 + 83.3 + 73.1 + 80.9 + 79.8 + 80.5 + 77.4 + 78.2 = 3865.9
Finally, we find the averages by dividing by the number of values.
Average of X values = 3870.5/50=77.413870.5/50 = 77.41
Average of Y values = 3865.9/50=77.3183865.9/50 = 77.318

3. Final Answer

Average of X values: 77.41
Average of Y values: 77.318