The problem has three parts: (i) Simplify the expression $(4\sqrt{2} + \sqrt{3})(3\sqrt{2} + 2\sqrt{3})$. (ii) Given the function $f(x) = 3x^2 - 4$, find $f'(x)$ from first principles. (iii) Solve the polynomial equation $3x^3 + 8x^2 - 15x + 4 = 0$.

AlgebraSimplificationDerivativesCalculusPolynomial EquationsRational Root Theorem
2025/5/8

1. Problem Description

The problem has three parts:
(i) Simplify the expression (42+3)(32+23)(4\sqrt{2} + \sqrt{3})(3\sqrt{2} + 2\sqrt{3}).
(ii) Given the function f(x)=3x24f(x) = 3x^2 - 4, find f(x)f'(x) from first principles.
(iii) Solve the polynomial equation 3x3+8x215x+4=03x^3 + 8x^2 - 15x + 4 = 0.

2. Solution Steps

(i) Simplify (42+3)(32+23)(4\sqrt{2} + \sqrt{3})(3\sqrt{2} + 2\sqrt{3}):
Expand the expression:
(42+3)(32+23)=(42)(32)+(42)(23)+(3)(32)+(3)(23)(4\sqrt{2} + \sqrt{3})(3\sqrt{2} + 2\sqrt{3}) = (4\sqrt{2})(3\sqrt{2}) + (4\sqrt{2})(2\sqrt{3}) + (\sqrt{3})(3\sqrt{2}) + (\sqrt{3})(2\sqrt{3})
=12(2)+86+36+2(3)= 12(2) + 8\sqrt{6} + 3\sqrt{6} + 2(3)
=24+116+6= 24 + 11\sqrt{6} + 6
=30+116= 30 + 11\sqrt{6}
(ii) Find f(x)f'(x) from first principles:
f(x)=3x24f(x) = 3x^2 - 4
The definition of the derivative from first principles is:
f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
f(x+h)=3(x+h)24=3(x2+2xh+h2)4=3x2+6xh+3h24f(x+h) = 3(x+h)^2 - 4 = 3(x^2 + 2xh + h^2) - 4 = 3x^2 + 6xh + 3h^2 - 4
f(x+h)f(x)=(3x2+6xh+3h24)(3x24)=6xh+3h2f(x+h) - f(x) = (3x^2 + 6xh + 3h^2 - 4) - (3x^2 - 4) = 6xh + 3h^2
f(x+h)f(x)h=6xh+3h2h=6x+3h\frac{f(x+h) - f(x)}{h} = \frac{6xh + 3h^2}{h} = 6x + 3h
f(x)=limh0(6x+3h)=6x+3(0)=6xf'(x) = \lim_{h \to 0} (6x + 3h) = 6x + 3(0) = 6x
f(x)=6xf'(x) = 6x
(iii) Solve the polynomial equation 3x3+8x215x+4=03x^3 + 8x^2 - 15x + 4 = 0:
We look for rational roots using the Rational Root Theorem. Possible rational roots are ±1,±2,±4,±13,±23,±43\pm 1, \pm 2, \pm 4, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}.
Try x=1/3x = 1/3:
3(13)3+8(13)215(13)+4=3(127)+8(19)5+4=19+891=991=11=03(\frac{1}{3})^3 + 8(\frac{1}{3})^2 - 15(\frac{1}{3}) + 4 = 3(\frac{1}{27}) + 8(\frac{1}{9}) - 5 + 4 = \frac{1}{9} + \frac{8}{9} - 1 = \frac{9}{9} - 1 = 1 - 1 = 0
So x=13x = \frac{1}{3} is a root. This means (3x1)(3x-1) is a factor.
Divide 3x3+8x215x+43x^3 + 8x^2 - 15x + 4 by (3x1)(3x-1):
3x3+8x215x+43x1=x2+3x4\frac{3x^3 + 8x^2 - 15x + 4}{3x - 1} = x^2 + 3x - 4
So 3x3+8x215x+4=(3x1)(x2+3x4)3x^3 + 8x^2 - 15x + 4 = (3x - 1)(x^2 + 3x - 4)
Now solve x2+3x4=0x^2 + 3x - 4 = 0. This factors as (x+4)(x1)=0(x+4)(x-1) = 0. So x=4x = -4 or x=1x = 1.
The roots are x=13,x=4,x=1x = \frac{1}{3}, x = -4, x = 1.

3. Final Answer

(i) 30+11630 + 11\sqrt{6}
(ii) f(x)=6xf'(x) = 6x
(iii) x=13,4,1x = \frac{1}{3}, -4, 1